PAUL SCHERRER INSTITUT

Muons for solid state research at PSI

Elvezio Morenzoni

Laboratory for Muon Spin Spectroscopy Paul Scherrer Institut, Villigen PSI, Switzerland

Future Muon Source Possibilities at SNS Workshop, 1-2 September 2016, Oak Ridge National Laboratory

Outline

- PSI facility (SµS, Swiss Muon Source)
 - instruments
 - statistics usage and scientific output
- Selected scientific examples:
 - magnetism, superconductivity, spin transport
 - in bulk materials, thin films/heterostructures

Accelerator Facilities PSI West High Intensity Proton Accelerator 0.59 GeV, 2.4 mA

SINQ: Neutron Source and Instruments

central controlroom

SµS: Muons Beamlines

-

SINQ

- h -

SLS: Swiss Light Source 2.4GeV, 400mA

p-Therapy

250MeV, <1µA

Generation of polarized muons (µ⁺)

2.4 mA \simeq 1.5 10¹⁶ Protons/sec **Production Targets** Graphite with 590 MeV (5.2 mm, 40 mm) $--- \pi^+ \rightarrow \mu^+ + \nu_{\mu}$ $p + C \rightarrow \pi^+ \pi^- p n \dots$ "Surface" \mathbf{u}^{\dagger} muons ~10⁷-10⁹ μ^+ /sec, 100 % pol., ~ 4 MeV generally used for "bulk" condensed matter studies For higher energies: "decay muons" from π^+ decay in flight, ~ 80 % pol. For thin film studies: low energy muons (eV-30 keV) 100 % pol. Future Muon Source Possibilities @SNS, ORNL, 1-9-2016

Different muon energies for different studies

PAUL SCHERRER INSTITUT

Muon Instruments at PSI : SµS (Swiss Muon Source)

SµS Statistics

Publications:~ 60 papers/year

- ~ 10 PRL, Science, Nature Journals, Nanoletters, ACS
- ~ 20 PRB

Research at the SµS

Magnetic materials Semiconductors **Molecular magnets** Magnetic sm Iridates **Organic sm Cobaltites Manganites Heavy Fermions** Intermetallic compounds with Thin films d- and f-elements **Multilayers** Oxides Spin Valves Low dimensional magnets FM/SC Spin liquids, ices, glasses AF/SC **Superconductors Material Science** Cuprates **Multiferroics** FeSC Chemistry, Soft matter **Battery materials** Layered SC Free radicals H storage materials Low T_c Liquid crystals

Surface Muon Instruments – GPS/LTF/Dolly

π M3: Shared by: <u>General Purpose Spectrometer and Low Temperature Facility</u>

- 4 MeV μ^+ , 100% polarized
- B_{ext} GPS: 0 0.6 T Dolly: 0 - 0.5 T LTF: 0 - 3 T
 • T GPS: 1.8 - 1200 K Dolly: 0.25 - 300 K LTF(DR): 0.02 - 4.2 K

Veto system for low background and small samples:

Sample size:

- ~ 2 mm DIA
- or ~ **30 mg**

Interplay SC/magnetism

Phase Diagram of Ba_{1-x}K_xFe₂As₂ (122)

Muon On REquest: MORE on GPS/LTF

Extract one muon at a time out of a continuous beam using fast-switching kicker

Worldwide Unique:

Combines advantages of continuous beam (very fast timing \rightarrow magnetism, superconductivity, high muon spin relaxation rate) and pulsed beam (very low background, \rightarrow very weak magnetism, low muon spin relaxation rate)

Time reversal symmetry breaking in SrPtAs

T_c=2.4 K locally noncentrosymmetric → non trivial sc state, f, d+id, TRSB

P.K. Biswas et al., Phys. Rev. B 87, 180503(R) (2013)

- ZF: Spontaneous very small magnetic field below T_c → ΔB ≈ 0.007 mT → TRSB
- TF: no line nodes in the gap
- Data consistent with d+id SC state

Complex frustration mechanism of a Quantum Spin Liquid

Ca10Cr7O28: Quantum Spin Liquid with dominant isotropic FM interaction

C. Balz, B. Lake et al., Nat. Phys., online 25 July 2016

Specific heat

µSR: absence of static magnetism, dynamical ground state down to the lowest temperature (19 mK)

Persistent, temperature independent dynamic at low temperatures

µSR studies under pressure

High Energy Muon Instrument GPD

µE1 Superconducting Decay Channel Beamline

- + 10 60 MeV $\mu^{\scriptscriptstyle +}$ or $\mu^{\scriptscriptstyle -}$, 80% Polarization
- **B**_{ext} 0 0.6 T
- T 0.25 475 K
- Large sample chamber for pressure cells (diameter up to 40 mm)

Pressure up to **2.8 GPa** (@4K)

R. Khasanov et al. High Pressure Research, **36**, 140 (2016) Double and single wall cells
Material: CuBe or MP35 alloy.
Diameter of the sample channel:
5.2 mm (7.2 mm).
Maximum sample height: 18mm
Pressure media: Daphne 7373 oil.

Pressure Induced Superconductivity in Mn based "helical" magnet

Magnetic structure of MnP under pressure

QCP in the superconducting state of quasiskutteridites (R₃T₄X₁₃)

P. Biswas, J. Krieger, E. M. et al., PRB 92, 195122 (2015), PRB 90, 144505 (2014)

Strong enhancement of SC at QCP

LE- μ ⁺ **Apparatus** @ μ **E4**

~6 •10⁸ μ⁺/s total ~1.9 •10⁸ μ⁺/s on LEM source High flux "surface" muon beam → Worldwide most intense surface muon beam

Th. Prokscha, E. Morenzoni, K. Deiters, F. Foroughi, D. George, R. Kobler, A. Suter and V. Vrankovic Physica B 374-375, 460-464 (2006) and Nucl. Instr. Meth. A 595, 317-331 (2008)

Low energy μ^+ beam and instrument for LE- μ SR

Heterostructure: La_{1.84}Sr_{0.16}CuO₄ / La_{1.94}Sr_{0.06}CuO₄ / La_{1.84}Sr_{0.16}CuO₄

E.Morenzoni., B. Wojek, A. Suter, T. Prokscha, G. Logvenov, I. Božovic, Nat. Commun. 2:272 (2011).

Direct measurement of the electronic <u>spin</u> diffusion length in a fully functional organic spin valve by low-energy muon spin rotation

A. J. Drew^{1,2}*, J. Hoppler^{1,3}, L. Schulz¹, F. L. Pratt⁴, P. Desai², P. Shakya², T. Kreouzis², W. P. Gillin²,
A. Suter⁵, N. A. Morley⁶, V. K. Malik¹, A. Dubroka¹, K. W. Kim¹, H. Bouyanfif¹, F. Bourqui¹,
C. Bernhard¹, R. Scheuermann⁵, G. J. Nieuwenhuys⁵, T. Prokscha⁵ and E. Morenzoni⁵

mature materials

8, 109 (2009)

Probing spins in heterostructures

Intrinsic Paramagnetic Meissner Effect Due to s-Wave Odd-Frequency Superconductivity

A. Di Bernardo,¹ Z. Salman,² X. L. Wang,³ M. Amado,¹ M. Egilmez,⁴ M. G. Flokstra,⁵ A. Suter,² S. L. Lee,⁵ J. H. Zhao,³ T. Prokscha,² E. Morenzoni,² M. G. Blamire,¹ J. Linder,⁶ and J. W. A. Robinson^{1,*}

Cambridge-PSI-CAS-Sharjah-St.Andrews-NTNU

 B_{ext}

Spin singlet: Meissner effect (diamagnetic)

$$\vec{J} = -\frac{e^2}{mc} n_s \vec{A}$$

Spin triplet component: paramagnetic Meissner effect (increase of magn. flux instead of decrease)

$$\vec{J} = -\frac{e^2}{mc} (n_s - n_t) \vec{A}$$

Singlet and triplet components have different decay lengths

S. Mironov, A. Mel'nikov, and A. Buzdin Phys. Rev. Lett. **109**, 23700 (2012)

Magnetic field profiles

HAL-9500: <u>High field And Low temperature µSR (9.5 T, < 20 mK)</u>

Optimized for TF measurements LF also possible

Instrument

Beam line with 90° spin rotator

A very compact and ultra fast spectrometer

Detector system based on Avalanche Photo Detectors (APD)

A. Stoykov, R. Scheuermann et al.

Summary and outlook

- SµS @ PSI has 6 different instruments covering a wide range of T, B, p and depth
- Some examples of use of µSR in the study of magnetism, superconductivity, spin transport
- Not shown: many things
 - Applications in chemistry, soft matter, applied physics, semiconductors (muonium spectroscopy), defect and diffusion studies, (quantum) impurities...
 - Experiments with external stimulus, ...
- μSR now a standard technique making increasing significant contribution in Condensed Matter, Material Science research and other fields
- New techniques, such as low energy µSR are extending the already broad range of applications, new tools such as high field/pressure and low temperature instruments, external stimuli
- -Future possibilities: Introducing lateral resolution: microbeams or spectrometers for μ -e vertex determination
- Synergy and complementarity with other probes and facilities: neutrons, photons...
- Synergy and complementarity with macroscopic techniques: transport, magnetization, thermodynamic measurements,...
- A new µSR facility in the US @ SNS has great potential to address a new user community and enlarge the existing one and is complementary to existing facilities