

Software status for inelastic neutron scattering – DGS and TAS

Andrei T. Savici Oak Ridge National Laboratory

ORNL is managed by UT-Battelle, LLC for the US Department of Energy

Overview

- Organizational changes
- Status of DGS reduction
- Status of TAS reduction
- Data analysis

Starting point: 2018 Triennial Review

Reviewers noted:

- Improvements in data acquisition
- Need for prioritization
- Successes where "embedding" worked; pointing out that it is insufficient
- Lack of uniformity across instruments
- Reduction: users experiencing delays or having to rely heavily on beam line scientists

DOE Recommendation:

BES notes the chronic concerns, over several triennial reviews, that the shortcomings in the **data reduction software** at SNS and HFIR have not been adequately addressed. BES requests a plan with specific milestones and timelines to implement strategic enhancements to properly support the users' needs. BES will conduct a subject matter expert review of the plan, prior to its implementation in FY 2019.

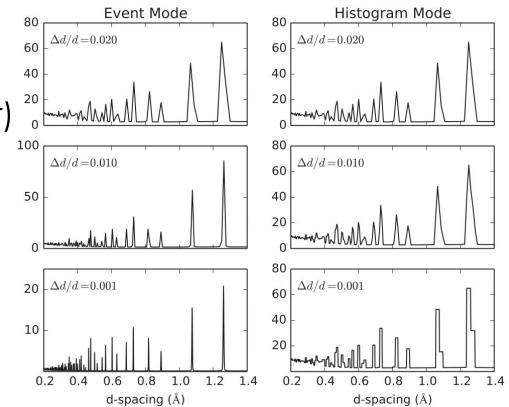
New roles

• Mhhš

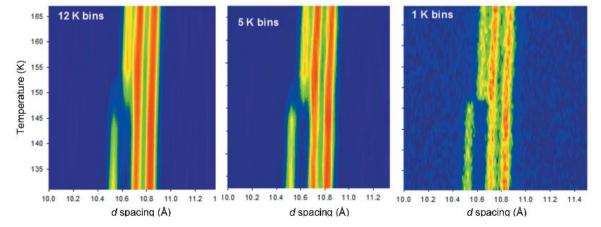
- Not everyone is an expert in the entire software development chain
- Remove distractions
- Clearly communicate who does what
- Improve quality

DAK RIDGE HIGH FLUX ISOTOPE REACTOR

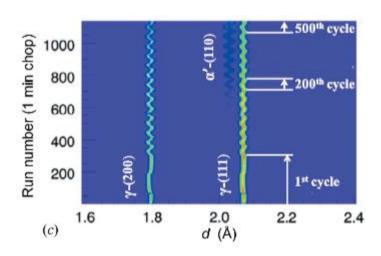
• Roles:


- Computational instrument scientist
- Computational scientist
- Research software engineer
- Software project manager
- Software quality assurance specialist
- Software release engineer
- Computational scientific associate
- Software user liaison

Overview

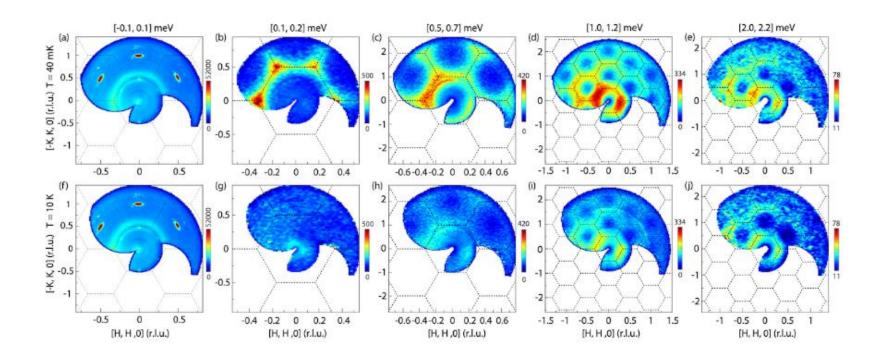

- Organizational changes
- Status of DGS reduction
- Status of TAS reduction
- Data analysis

Event based data


- Record detection time for each individual neutron
- Clean up spurious instrumentation mishaps
- Dynamic rebinning
- Time resolved data acquisition
 - Slow changes (temperature, goniometer)
 - Fast changes (pulse magnetic fields)

Examples of Event Filtering

Continuous temperature ramping

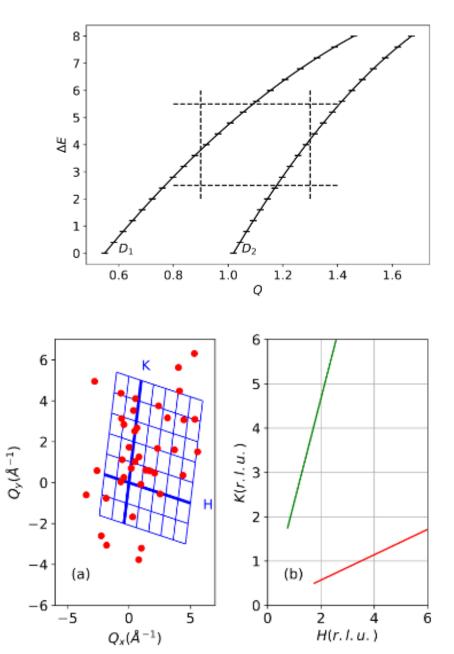


- Distance AField 30 (a) Detector Sample $\mu_0 H$ 24 22 Ε H₀H 20 Time Δť 16-**1**9T Pulse magnet Counts 50 (c) 40 IV 30 21-30T 1.2 1.4 1.6 **Q** = (0K0) [r.l.u.] 0.8 1 1.8 2
- Battery charging and discharging

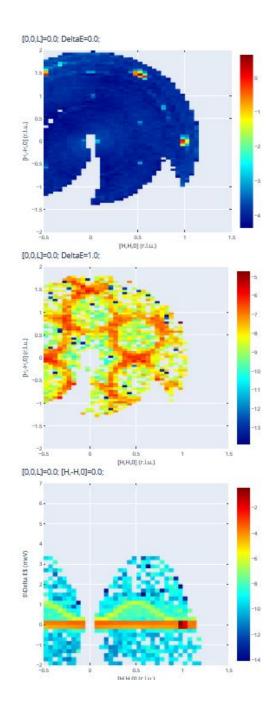
Actional Laboratory

New normalization for multidimensional data

- We keep events (smaller files for inelastic)
- Procedure available for spectroscopy or diffraction measurements

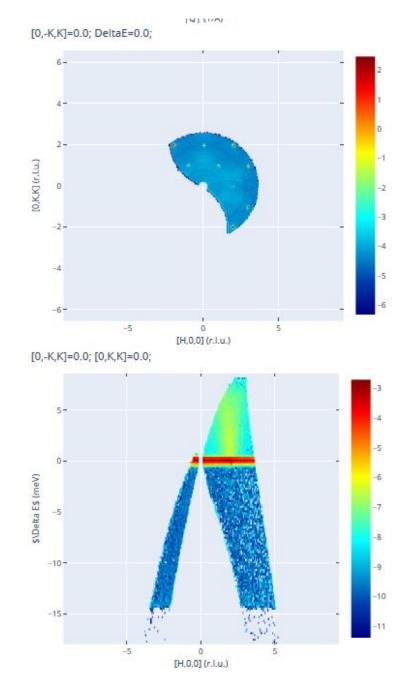


- Correctly account for files with different statistics
- Keep data and normalization separately


Comparison with mslice approach

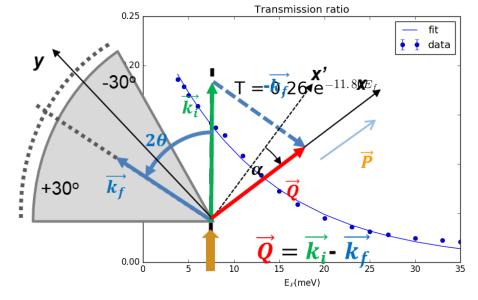
- Mslice uses histograms in energy transfer where each bin is considered an independent measure of scattering cross section, then averages those numbers
- Better approach: bin counts and calculate separately the weighting factor from detector trajectories

Advantages of current approach


- Allows for correct accounting of multiple runs, with different proton charge, different geometry
- Much smaller memory footprint
- Non axis aligned cuts and symmetry operations
- Can correct UB matrix
- Implemented in MANTID, so the entire workflow can be implemented in a single script
- Can rely on autoreduction

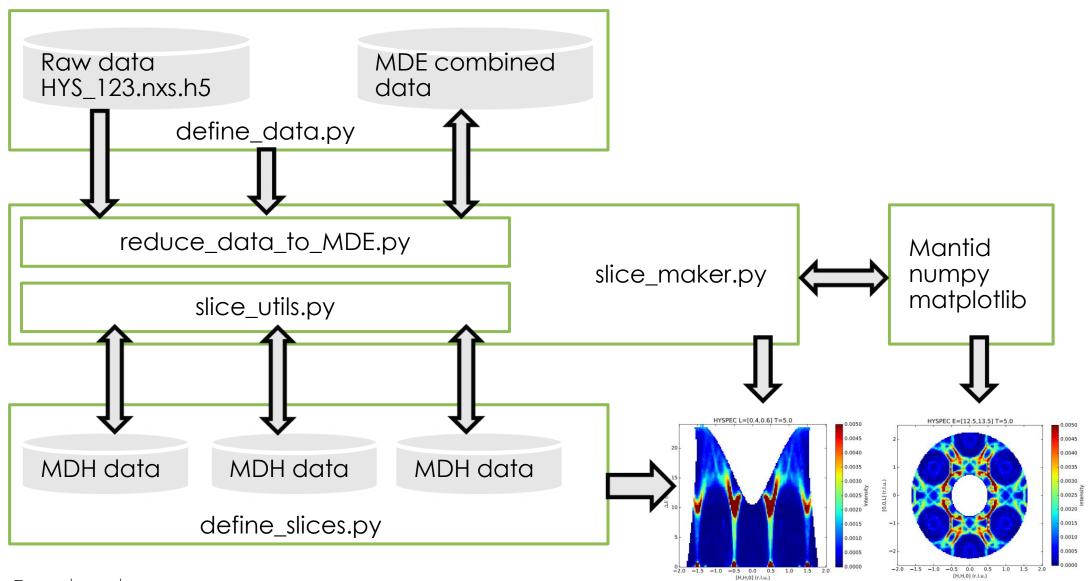
Autoreduction update

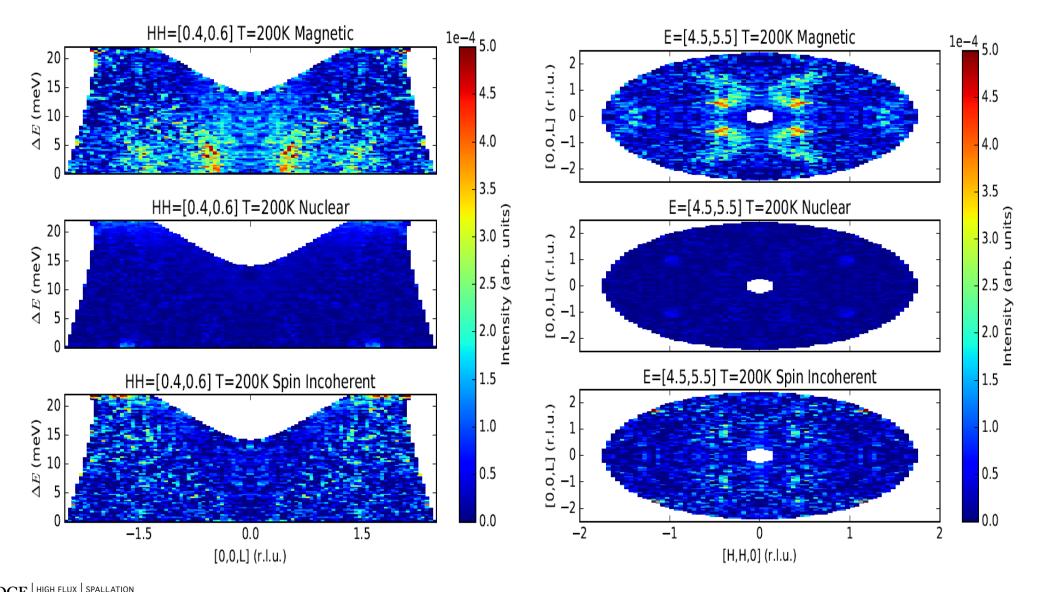
• Allow users to decide which plots they want to see on https://monitor.sns.gov


Autoreduction - plotting setup _ D							
Load configuration Save configuration			tion		Add 2D slice	Add 1D cut	
UB input	Plot	1 🗶 Plot 2 🗶	Plot 3 🗶				
		Min	Max	Step	Projection Ba	sis	
[H,0,0]	•			0.050	Projection u	1,0,0	
[0,K,K]	•][0.050	Projection v	0,1,1	
[0,-K,K]	•	-0.500	0.500		Projection w	0,-1,1	
		-0.500	0.500				

Actional Laboratory

Polarization analysis

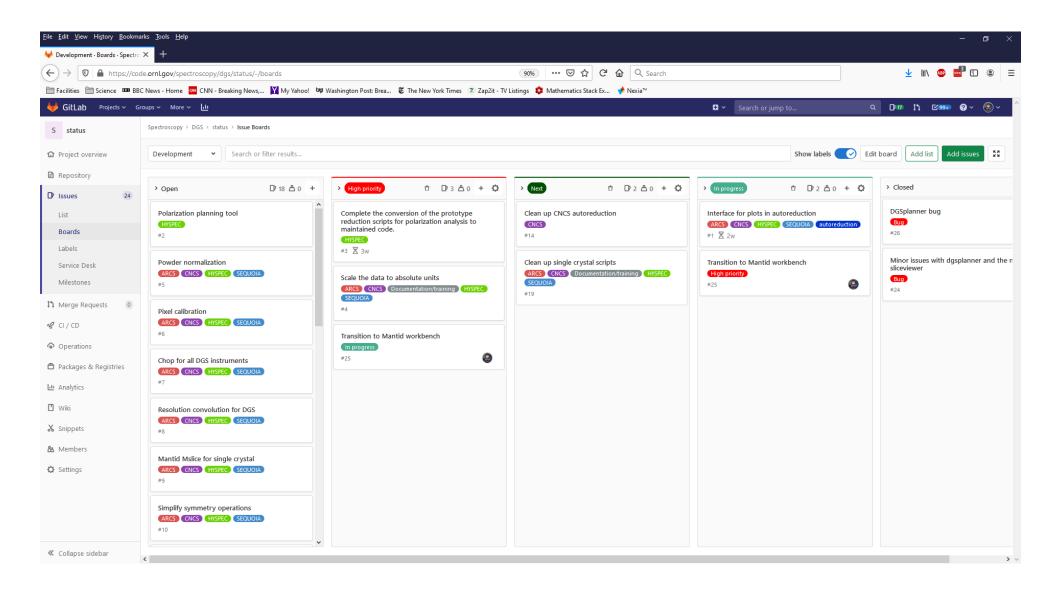

- Supermirror energy transmission
- Flipping ratio
- Wide angle detector and TOF the direction of Q with respect to the plane defined by the two vectors, k_i and P, varies significantly as a function of the energy transfer and the detector pixel position


 α = Schärpf angle

$$N^{\dagger}N = \frac{1}{2} \left(\Sigma_x^{nsf} + \Sigma_y^{nsf} - \Sigma_z^{sf} \right) = \frac{1}{2} \left(\Sigma_{x'}^{nsf} + \Sigma_{y'}^{nsf} - \Sigma_z^{sf} \right)$$
$$I_{si} = \frac{3}{2} \left(\Sigma_x^{nsf} - \Sigma_y^{nsf} + \Sigma_z^{sf} \right) = \frac{3}{2} \frac{\Sigma_{x'}^{nsf} - \Sigma_{y'}^{nsf}}{\cos^2 \alpha - \sin^2 \alpha} + \frac{3}{2} \Sigma_z^{sf}$$
$$M_{\perp y}^{\dagger} M_{\perp y} = \Sigma_z^{sf} - \frac{2}{3} I_{si}$$
$$M_{\perp z}^{\dagger} M_{\perp z} = \Sigma_z^{nsf} - \frac{1}{3} I_{si} - N^{\dagger} N$$

Implemented workflow

Example: polarized measurements in MnO



CAK RIDGE HIGH FLUX SPALLATION National Laboratory REACTOR SOURCE

Future plans for data reduction

- Finish MD algorithms for polarized SC
- MD algorithms for powder
- Mslice replacement for single crystal
- Efficient background subtraction
- Absolute scaling procedure
- UB matrix refinement
- Planning tools (polarized)

Issue tracking

Overview

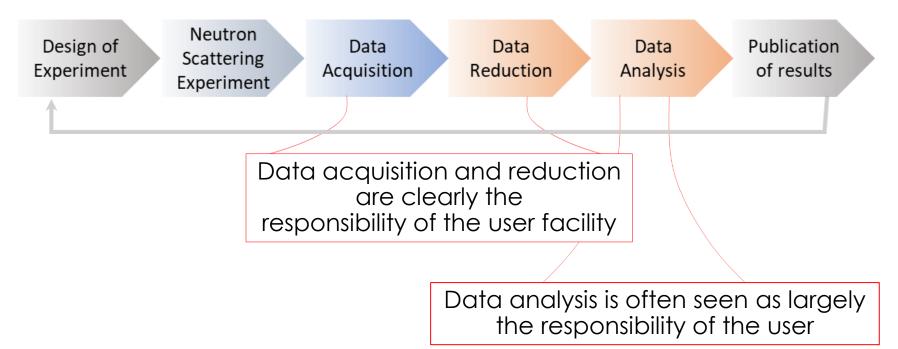
- Organizational changes
- Status of DGS reduction
- Status of TAS reduction
- Data analysis

Data reduction

- Data already comes out in the correct units, one just needs to combine multiple measurements
- Done historically with Graffiti
- Can be done with DAVE (we have a new conversion tool to fix file format)
- Plan to have an ORNL standalone replacement
- Need planning tools for remote access
- Resolution calculator

Issue tracking

→ 🛛 🔒 https://code.ornl.gov/spectroscopy/tas/status/-/issues	s 90% ··· 정 슈 C 쇼 Q Search		👱 III\ 🐵 📑 🗉 🤇
cilities 🗎 Science 🚥 BBC News - Home 🏧 CNN - Breaking News, 👔	🕻 My Yahoo! 👐 Washington Post: Brea 😨 The New York Times 🔽 Zap2it - TV Listings 🛭 🏮 Mathematics Stack Ex 📌 Nexia 🛚		
GitLab Projects ~ Groups ~ More ~ 🔟		 Search or jump to 	Q D'17 11 C'999 (? <
status	Spectroscopy > TAS > status > Issues		
roject overview	Open s Closed 0 All s	⋒	
epository	Recent searches v Search or filter results	Created date v 4F	
sues 5	2D visualization tools	F _1	
st	#5 · opened 2 months ago by Savici, Andrei T (CTAX) (HB1) (HB1A) (HB3)	updated 1 month ago	
ards	GUI tool for resolution calculation #4 · opened 2 months ago by Savici, Andrei T (CTAX) Feature (HB1) (HB1A) (HB3)	ष्ट्रि 1 updated 2 months ago	
rvice Desk	Correction for the resolution volume for inelastic scattering measurements with fixed Ei #3 · opened 2 months ago by Savici, Andrei T Feature HBIA	다 0 updated 2 months ago	
ilestones	Graffiti replacement #2 · opened 2 months ago by Savici, Andrei T CTAX (Feature) (HB1) (HB1A) (HB3) (High priority)	اللہ updated 1 month ago	
/ CD	Correction for lambda/n (n>1) contamination of beam monitor #1 · opened 2 months ago by Savici, Andrei T CTAX Feature (HB1) (HB1A) (HB3)	미 0 updated 2 months ago	
perations		apuacu z montris ago	
ckages & Registries			
alytics			
ki			
ippets			


Overview

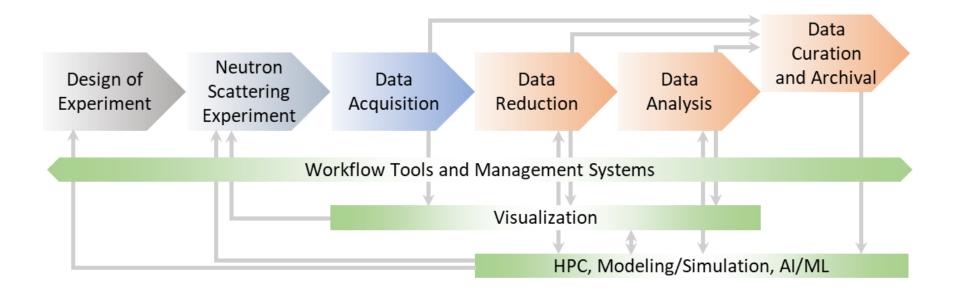
- Organizational changes
- Status of DGS reduction
- Status of TAS reduction
- Data analysis

The data pipeline in the user experience

In a traditional linear workflow:

Raw data is instrument-specific (requires knowledge of detector geometry,

motor positions, etc.)

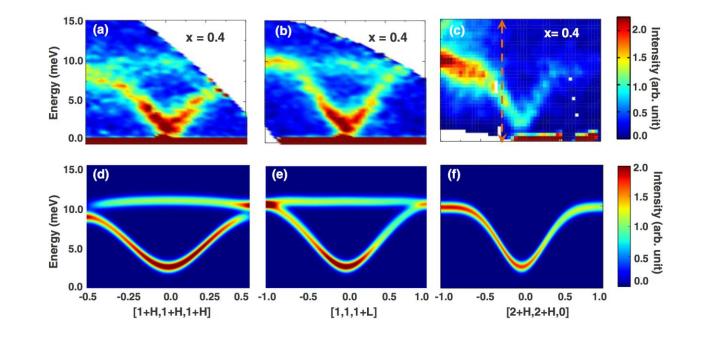

Reduced data is proportional to the neutron scattering cross-section from the sample, expressed in terms of physically meaningful variables (e.g., momentum transfer, energy)

Actional Laboratory

21

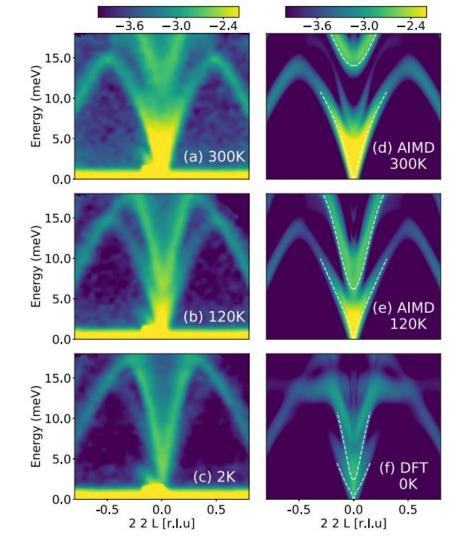
Courtesy H. Christen

The data pipeline in the user experience

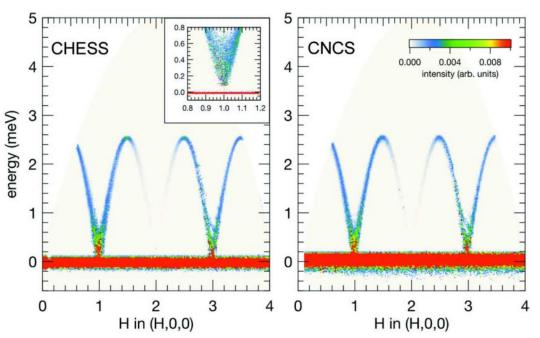

When data analysis, curation, and archival become integrated into the workflow, user facilities need to be enablers of these aspects

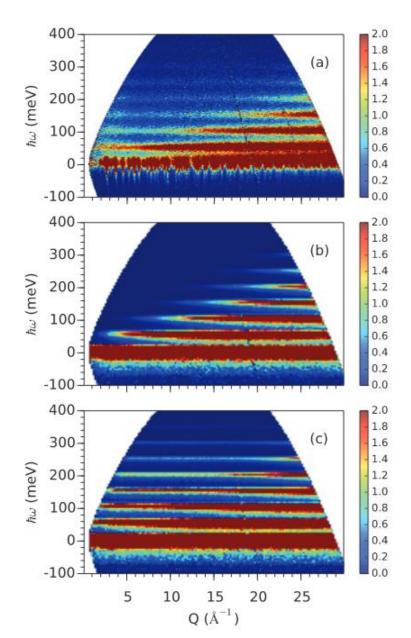
Courtesy H. Christen

Spin Waves with SpinWaveGenie


- Modeling Spin Waves in $Mn_{0.6}Co_{0.4}V_2O_4$
- Complex Hamiltonian
- Localized and itinerant component
- https://github.com/spinwavegenie/spinwavegenie

Phonon simulations with VASP and Phonopy


- Simulating phonons in $SrTiO_3$
- Ab initio molecular dynamic using VASP <u>https://www.vasp.at/</u>
- DFT calculations using Phonopy <u>https://phonopy.github.io/phonopy/inde</u> <u>x.html</u>
- Simulations can be done on NERSC or OLCF

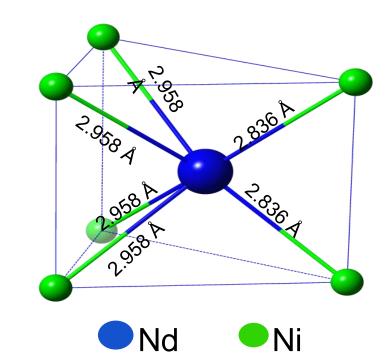

Courtesy O. Delaire

MCViNE simulations of instrument effects

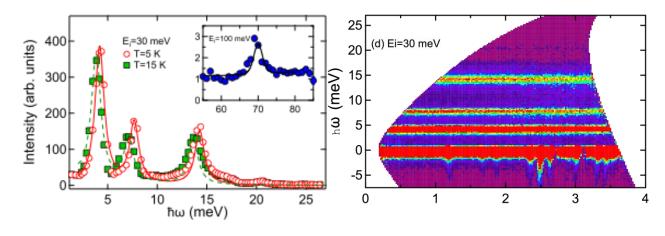
- Ray tracing Monte Carlo simulation of instrument and sample environment
- <u>https://mcvine.ornl.gov/</u>

25

Actional Laboratory


Crystal field calculations

- IDL functions based on the LS coupling approximation (M. Hutchings Solid State Physics, 1964), and intermediate coupling (B. G. Wybourne, 1965)
 - Can include bulk measurements (heat capacity and susceptibility) in the fit to constrain the wave functions
 - From G. Sala


Actional Laboratory REACTOR SOURCE

• There is a Mantid alternative

Sala and Stone, Phys. Rev. Mat 1, 054404 (2017)

$$\begin{split} H &= B_2^0 \hat{O}_2^0 + B_2^2 \hat{O}_2^2 + B_4^0 \hat{O}_4^0 + B_4^2 \hat{O}_4^2 + B_4^4 \hat{O}_4^4 + \\ & B_6^0 \hat{O}_6^0 + B_6^2 \hat{O}_6^2 + B_6^4 \hat{O}_6^4 + B_6^6 \hat{O}_6^6 \end{split}$$

Future data analysis

- Continue developing packages for spin wave, crystal field, and phonon calculations
- Continue development of MCViNE and provide analytical or simplified forms for resolution, absorption calculation
- Work on the interfacing between simulation and data reduction

• We can not do it all at ORNL – develop external collaborations