

ORNL is managed by UT-Battelle, LLC for the US Department of Energy

Spectroscopy Group

Mark Lumsden, Group Leader Sharon Porter, Admin

Chemical Spectroscopy

BASIS & VISION

Murillo Martins

Timmy Ramirez-Cuesta, Lead Luke Daemen BASIS Yongqiang Cheng Niina Jalarvo Naresh Osti Matthew Ryder Raphael Balderas*

Direct Geometry Spectroscopy

ARCS, SEQUOIA, CNCS, & HYSPEC

Doug Abernathy, Lead

Ovidiu Garlea

Garrett Granroth

Sasha Kolesnikov

Daniel Pajerowski

Andrey Podlesnyak

Andrei Savici

Matthew Stone

Barry Winn

Anjana Samarakoon*

Allen Scheie*

Tao Xie*

Triple-Axis Spectroscopy

HB-1A, HB-1, HB-3, & CTAX

Jaime Fernandez-Baca, Lead

Adam Aczel

Songxue Chi

Tao Hong

Masa Matsuda

Wei Tian

Travis Williams

Fei Li*

Depei Zhang*

Large Scale Structures Group

Volker Urban, Group Leader Katerra Sweat, Admin

SANS / Spin Echo

NSE

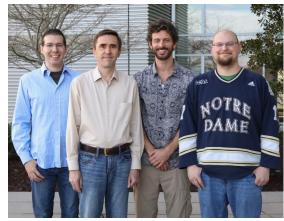
William Heller, Lead Laura Stingaciu Piotr Zolnierczuk (Only listing Spin Echo staff)

Direct Geometry Spectroscopy

SNS BL-18 (ARCS)

Doug Abernathy Garrett Granroth Rick Goyette (SA)

Thermal Chopper Spectrometer with large solid angle coverage


SNS BL-17 (SEQUOIA)

Matthew Stone Sasha Kolesnikov Victor Fanelli (SA)

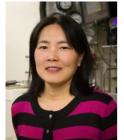
Thermal Chopper Spectrometer with fine Q and ω resolution

SNS BL-5 (CNCS)

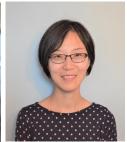
Cold Neutron Chopper Spectrometer

Daniel Pajerowski Andrei Podlesnyak Chris Schmitt (SA)

SNS BL-14B (HYSPEC)

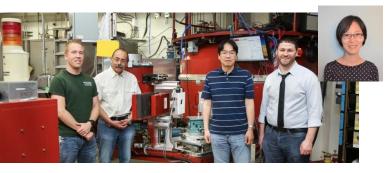


Barry Winn Ovidiu Garlea Melissa Graves-Brook (SA)

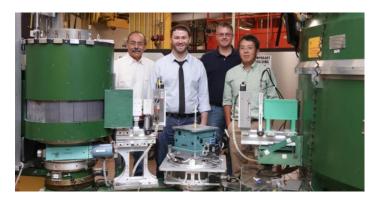

Versatile cold neutron spectrometer for polarized and unpolarized measurements

Triple-Axis Spectroscopy

HFIR HB-1A (FIE-TAX)



Adam Aczel Wei Tian Shirley Xu (SA)


HFIR HB-1 (PTAX)

Masa Matsuda Jaime Fernandez-Baca Travis Williams Shirley Xu (SA)

Fixed incident energy triple-axis spectrometer

HFIR HB-3 (TAX)

Versatile thermal triple-axis spectrometer

Polarized neutron triple-axis spectrometer

HFIR CG-4C (CTAX)

Cold neutron triple-axis spectrometer

Tao Hong Jaime Fernandez-Baca Travis Williams Mike Cox(SA)

Songxue Chi Jaime Fernandez-Baca Travis Williams Mike Cox(SA)

Chemical Spectroscopy

SNS BL-2 (BASIS)

Eugene Mamontov Niina Jalarvo Naresh Osti Chris Schmitt (SA)

Near-backscattering, crystal-analyzer spectrometer

Shull FellowMatthew Ryder

SNS BL-16B (VISION)

Luke Daemen Timmy Ramirez-Cuesta Eric Novak (SA)

YQ Cheng (CIS)

spectroscopy

Indirect Geometry

spectrometer optimized for measuring vibrational

SNS BL-15 (NSE)

Laura Stingaciu Piotr Zolnierczuk Mary Odom (SA)

Time-of-flight neutron spin echo spectrometer

(Green: Supports Polarization Analysis)

Cold Moderator: 2 meV < Ei < 100 meV Thermal Moderator: 5 meV < Ei < 2 eV

1-3% elastic E resolution / less flux

CNCS

SEQUOIA

3-5% elastic E resolution / high flux

HYSPEC

ARCS

Direct Geometry

Highest time-averaged flux

CTAX

HB-1A, **HB-1**, HB-3

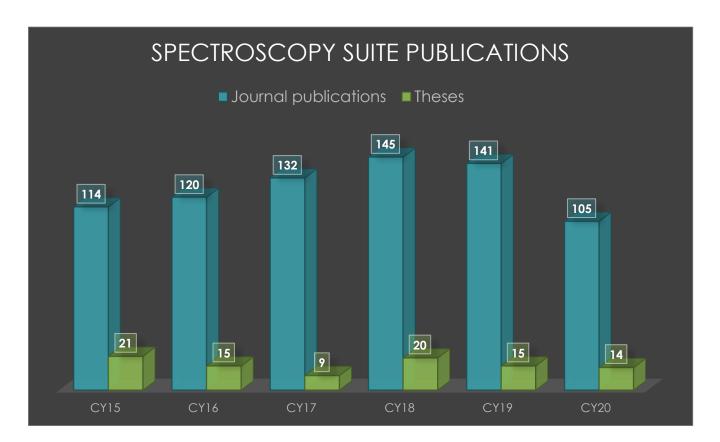
Triple-Axis

High energy resolution and high flux on sample, almost constant $\Delta E/E$

BASIS

VISION

Indirect Geometry


Ultra high-resolution spectroscopy

NSE

HB-1 (Wollaston prisms)

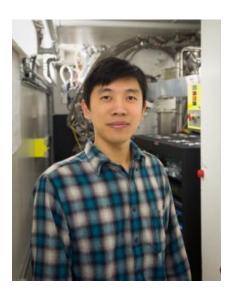
Spin Echo

Spectroscopy Suite Publications

- Steady publication output from 2017 – present
- Note: FY19 involved an unplanned 11-month HFIR shutdown and a significant reduction in SNS beam time.
- FY20: COVID-19 impact on user program.

~30-35% of instrument publications from SNS/HFIR use instruments from Spectroscopy Suite

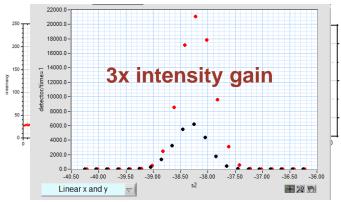
Spectroscopy Staffing


- Instrument scientist staffing changes:
 - ARCS instrument scientist:
 - Andrew Christianson Arnab Banerjee Garrett Granroth
 - CNCS instrument scientist:
 - Georg Ehlers Daniel Pajerowski (this happened before 2017 review)
 - NSE instrument scientists:
 - Transition from Juelich staff to ORNL staff
- Added new scientific associates:
 - Mary Odom NSE
 - Shirley Xu HB-1A / HB-1
 - Eric Novak VISION

Spectroscopy Staffing

Added two new computational instrument scientists:

Andrei Savici
Direct Geometry Team
(Also providing support for TAS)



Yongqiang Cheng Chemical Spectroscopy Team (Also providing support for NSE)

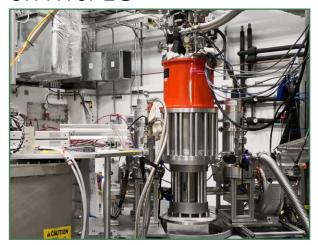
Technique developments – collaboration with NTD

Monochromator optimization HB-1A


 Incorrect beam focus was analyzed, planned, corrected, & characterized in collaboration NTD staff

- Lowell Crow went to Missouri to align first monochromator and helped to characterize performance
- Lee Robertson worked with Wei Tian to model optics

Larmor diffraction & high res. spectroscopy on HB-1


 Development of Wollaston prisms and implementation for Larmor diffraction or inelastic spin echo on HB-1 led by Fankang Li, NTD

Phongrengroy, shift of Ge compared with TRISP (FRM-II)

Spherical neutron polarimetry

- New design, led by Peter Jiang, uses high-Tc films combined with mu-metal.
- Initial design for HB-1; tested on HYSPEC

- DOE Early Career Award for Peter Jiang.
- Plans to develop wide angle HYSPEC SNP device

Recent highlights of instrument upgrades

- HB-1: Wollaston prisms; SNP device (underway)
- HB-1A: Upgrade of the monochromator system and drum
- HB-3: shield around sample position
- CNCS: radial collimator
- ARCS: upgrade of detector electronics
- HYSPEC: elevator / oscillator; purchased supermirror array
- BASIS: implemented use of higher order Si (333)
- VISION: addition of collimators for diffraction banks

Recent highlights of instrument upgrades

- Sample environment:
 - SNS 14T magnet
 - 6T workhorse magnet for HFIR
 - CTAX: 11T uncompensated magnet moved to HFIR
 - Liquid helium autofill (LHeF) system installed across SNS and tested at HB-1A
 - Pressure cells for spectroscopy (clamp cells, DACs, etc.)
 - Second 6T magnet for HFIR to handle demand (underway)

Planned instrument upgrades

- HB-1: upgrade of Heusler monochromator (underway)
- HB-3: Velocity selector in incident beam
- HB-1 / HB-3: new secondary spectrometers
- HB-1A: new secondary spectrometer (underway)
- SEQUOIA / CNCS: complete detector array (CNCS underway)
- SEQUOIA: radial collimator; Brillouin scattering
- HYSPEC: shielding to reduce time independent background (order submitted)
- VISION: new CCR with fast cooldown; optimized sample changer

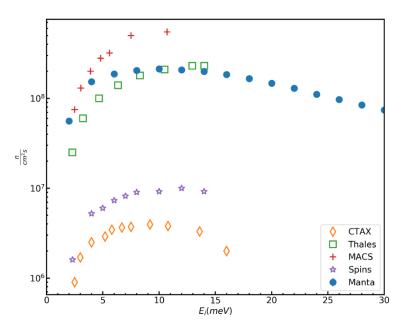
New instruments – international context

	Thermal TAS	Cold TAS	Thermal DGS	Cold DGS	Backscattering	Vibrational Spectroscopy	Spin Echo
ORNL	3	1	2	2	1	1	1
NIST	1	2	0	1	1	1	1
FRM-II	2	3	1	1	1	0	2
ISIS	0	0	3	1	2	1	0
J-PARC	0	0	0	4	1	0	1
ILL	3	2	1	2	2	1	3
PSI	1	2	0	1	0	0	0

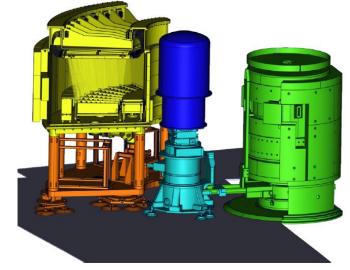
Instrument priorities (HFIR & SNS-FTS):

- World class cold neutron triple-axis @ HFIR
- High resolution NSE @ HFIR
- BeFAST (compliment to VISION)

New HFIR spectroscopy instruments


MANTA

- World class flux on sample
- Interchangeable secondary spectrometer
 - CAMEA-like multianalyzer
 - Single detector (compatible with Wollaston prisms)

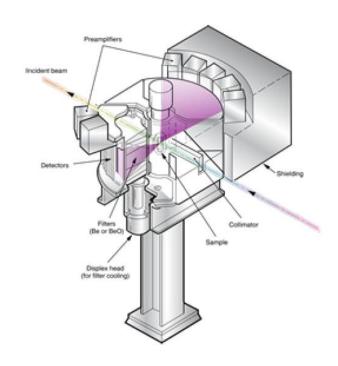

• HFIR-NSE:

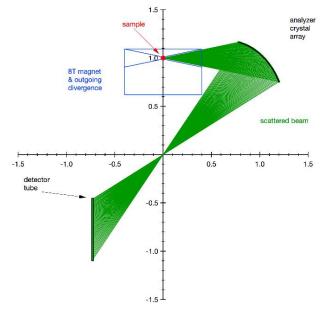
National Laboratory REACTOR SPALLATION NEUTRON SOURCE

- High-flux, high-resolution NSE optimized for small samples
- Provide measurements to Fourier times up to 500 ns with extended Q range of 0.02-2 Å-1

McSTAS simulation of incident flux for MANTA (G. Granroth)

CAMEA at PSI


New SNS-FTS instruments


BeFAST

- Compact Be filter spectrometer on BL-16A;
 enable neutron near-IR Spectroscopy
- Coarser resolution than VISION (up to 5 meV). Better intensity for $\Delta E > 3000 \text{ cm}^{-1}$
- Extend chemical spectroscopy capabilities with emphasis on hydrogen bonded systems.

HIGGS:

- New indirect geometry spectrometer for BL-8A (decoupled water moderator)
- Planar array of PG analyzers scattering through common point to detectors below sample
- Optimized for complex sample environments

(Green: Supports Polarization Analysis)

Cold Moderator: 2 meV < Ei < 100 meV Thermal Moderator: 5 meV < Ei < 2 eV

1-3% elastic E resolution / less flux

CNCS

SEQUOIA

3-5% elastic E resolution / high flux

HYSPEC

ARCS

Direct Geometry

Highest time-averaged flux

MANTA

HB-1A, **HB-1**, HB-3

Triple-Axis

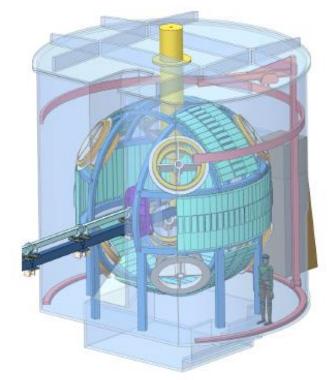
High energy resolution and high flux on sample, almost constant $\Delta E/E$

BASIS

VISION, **Befast**, **Higgs**

Indirect Geometry

Ultra high-resolution spectroscopy

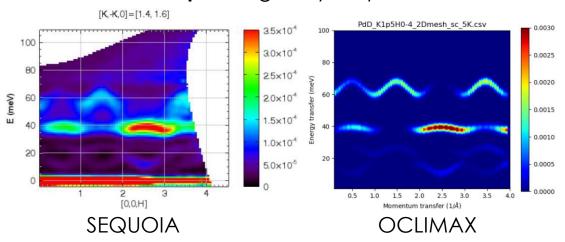

NSE, HFIR-NSE

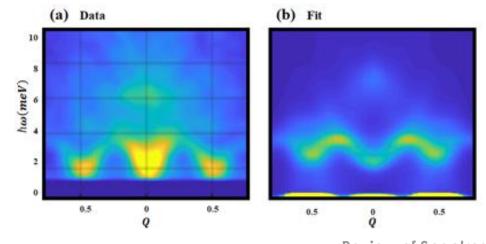
HB-1 (Wollaston prisms)

Spin Echo

Second Target Station

- High brightness coupled hydrogen moderators
- Spectroscopy concepts underway:
 - <u>CHESS</u>: chopper spectrometer for small samples (Gabriele Sala)
 - <u>TITAN</u>: extreme environment spectrometer / diffractometer (Barry Winn)
 - <u>BWAVES</u>: indirect geometry spectrometer with high energy resolution and a very broad dynamic range of energy transfers (Eugene Mamontov)
 - JANUS: Hybrid indirect/direct geometry spectrometer (Timmy Ramirez-Cuesta)
 - EXPANSE: Wide angle neutron spin echo (Changwoo Do)




Spectroscopy data analysis software

- Ongoing developments:
 - ICEMAN workflow management software (T. Ramirez-Cuesta)
 - QCLIMAX advanced analytical fitting of QENS data (T. Ramirez-Cuesta)
 - OCLIMAX software for calculating phonon spectra from DFT (YQ Cheng)
 - Mantid software to visualize DGS data (A. Savici)
 - Landau-Lifshitz code to simulate classical magnetic excitations (A. Samarakoon, A. Tennant, C. Batista)

OCLIMAX Example: single crystal phonons in PdD

Landau-Lifshitz: calculation of spectrum of α -RuCl₃

Spectroscopy data analysis software

- Data analysis plans developed (T. Ramirez-Cuesta & G. Granroth)
 - Expand ICEMAN concept (uses scientific workflows)
 - Enable DFT / OCLIMAX / access to HPC resources to enable modeling of large-scale systems
 - Molecular dynamics for QENS / NSE analysis
 - Extend McVINE to become a more useful analysis tool
 - Ensure long-term future of SpinW
 - Transform prototype Landau-Lifshitz code into user tool
 - Enable access to community developed codes like DMRG, DMFT, quantum Monte Carlo, etc.
 - All of these could be incorporated into an ICEMAN-like concept to provide a general data analysis framework for Spectroscopy

Specific 2017 recommendation – SE support

- Concerns about lack of adequate support for sample environment (particularly at HFIR)
- Staffing has remained constant but there are steps that have been taken to improve the situation including
 - SA and instrument scientist training on certain SE tasks
 - Cross-training and rebalancing of staff between SNS and HFIR
 - Block scheduling of equipment to minimize moves
 - Instrument hall coordinators now supporting HFIR

Specific 2017 recommendation – SE support

Automation:

- Auto needle valve control across HFIR & SNS
- Liquid helium autofill deployed across SNS and being deployed at HFIR
- Multipoint liquid helium autofill being developed

Other steps:

- SE steering committees are strong advocates & communication venues
- Science productivity / midscale used to increase equipment inventory

Concerns:

- Demand continues to outpace equipment purchase particularly for magnets
- Lack of helium recovery infrastructure & rising helium costs.

Summary

- Mature instrument suite with steady publication output
- Continuous improvement of instruments
- Commitment to technique development in close collaboration with staff in NTD
- Plans for new instruments at HFIR, SNS-FTS, and SNS-STS to expand spectroscopy suite
- Plans underway for advanced, integrated data analysis platform / tools

September 17, 2020

Time	Event					
8:30–8:50 am	Welcome (Paul Langan)					
8:50-9:20 am	Neutron Scattering Division Outlook & Strategy (Hans Christen)					
9:20-9:50 am	Spectroscopy Overview & Strategy (Mark Lumsden)					
9:50-10:15 am	Break					
10:15 am-12:05 pm	Parallel Beam line presentations					
	Direct Geometry	Triple-Axis	Chemical Spectroscopy			
10:15–10:25 am	Team overview (Doug Abernathy)	Team overview (Jaime Fernandez-Baca)	Team overview (Timmy Ramirez-Cuesta)			
10:25–10:50 am	CNCS (Daniel Pajerowski)	CTAX (Tao Hong)	BASIS (Eugene Mamontov)			
10:50-11:15 am	HYSPEC (Barry Winn)	HB-1 (Masa Matsuda)	NSE (Laura Stingaciu)			
11:15–11:40 am	SEQUOIA (Matt Stone)	HB-1A (Adam Aczel)	VISION (Luke Daemen)			
11:40 am-12:05 pm	ARCS (Doug Abernathy)	HB-3 (Songxue Chi)				
12:05–1:00 pm	LUNCH					
1:00-1:30 pm	Direct Geometry / Triple-axis software (A. Savici)		Chemical spectroscopy software (YQ Cheng)			
1:30 pm -	Committee work time and report writing					

September 18, 2020

9:00–9:30 am	0–9:30 am Committee recap and Q&A (GL and TLs)					
9:30–11:30 am	Meet with Direct Geometry Team members	Meet with Triple-Axis Team members	Meet with Chemical Spectroscopy Team members			
11:30 am-12:30 pm	Committee work time and report writing					
12:30-1:30 pm Lunch						
1:30-2:30 pm	Committee Verbal Report and Recommendations (DD, GL, TLs, instrument teams)					
2:30 p.m. Adjourn						