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Constructing beam profile at the PBW

* There are four sets of magnets upstream of the harp, all of which are
measured by wire scannings. The beam passing after the harp are

generally free drifting

» Based on the measurements, accelerator physicists can predict the
beam size (RMS) at the proton beam window and the target

& RTBT Wizard - Untitled.text = (= &
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Beam profiles at the Harp
« Three sets of wires at the harp (23.1 (h) x 42.2 (w) cm? )

— Horizontal, vertical and diagonal B T e e Y
— 7.912 m upstream of the target
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Constructing beam profile at the PBW

» Scaling the harp measured beam profile to the proton beam
window by (9,0,),,
(040 D hary

e The direction of each pixel at the proton beam window is
pointing to its corresponding pixel at the target, which is
scaled by (0,0,),.e
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Beam profiles at the PBW  ueremznm
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Incident proton beam profiles on target
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Target Modeling at SNS

« Conventional modeling uses code provided surface/body
definitions to manually construct geometry model

« Challenge to supporting engineering design
— Complicated design model
— High accuracy requirement for neutronic information
— Short response time waiting for neutronic information

20K RIDGE [gsrs s
National Laboratory

REACTOR | SOURCE



Traditional Neutronics model — TMR
* Mercury vessel (SS316)

Outer Reflector Plug Nose section

ssdio I Inner Reflector Plug S$316 - Front body

— Transition body

16061 Al6061
D20 flow

— Rear body

=| 5304 55304

* Inner reflector plug

— Al-6061 structure (D=0.99 m,
H=1.22 m)

— Be reflector (D=0.64 m, H=0.95 m)
— SS304 shielding blocks

— Four moderators

Target Module

SS316

1 Nose section

Proton ‘ 2
e Quter reflector plug
2 Front body

y!
Moderators
3 Transition body — SS316 structure (D=1.91 m,

I I 4 Rear body H=2.3 m)

— SS304 shielding blocks
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Neutronics model - Jet-flow target

Front body

Elevation view

Cooling shroud

Mercury vessel Transverse
view

Cooling shroud
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High-fidelity Modeling at SNS

» High-fidelity modeling

— Converts a CAD model automatically into an input file for the Monte
Carlo simulation: SuperMC & McCAD

— Directly run a CAD model in a Monte Carlo simulation: DAGMC
* Both methods were tested at SNS and we opted for DAGMC
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High-fidelity Modeling at SNS - SuperMC

e SuperMC

- Developed by Y. Wu'’s team, Institute of Nuclear Energy Safety Technology,
Chinese Academy of Science
(http://www.fds.org.cn/en/software/SuperMC.asp)

— CAD converter and inverter, supports MCNP, TRIPOLI, FLUKA & GEANT4
- Limited transport capability for running directly a CAD model

- Hybrid with deterministic transport method like TORT, and coupled with other
engineering software for thermal-hydraulic and structural analysis

- Visualization of the results
— All are supported in its own GUI

Fig. 6. Visualization of neutron flux distribution in divertor cassettes.

Fig. 3. ITER model conversion in SuperMC.

satoyVu et al.. Annals of Nuclear Energy, 2015, 82:161-168.
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http://www.fds.org.cn/en/software/SuperMC.asp

High-fidelity Modeling at SNS - SuperMC

e Hurdles in using SuperMC
— Not able to deal with spline surfaces
— Logic not perfect in writing cell descriptions

SuperMC

CAD software

Blue target in CAD model

SuperMC converted MCNP model
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DAGMC (Direct Accelerated Geometry Monte Carlo)

* Developed by Prof. P. Wilson’s team, Univ. of Wisconsin-Madison
http://svalinn.github.io/DAGMC/index.html

Supports MCNPG6 (sponsored by SNS), MCNP5, FLUKA, & OpenMC
Demonstration implementation for Shift, Tripoli & GEANT4

Acceleration techniques —

— Imprint/merge
— Surface faceting
— Oriented bounding box & bounding box tree

It relies on Cubit/Trellis for model processing

=

faceting
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http://svalinn.github.io/DAGMC/index.html

High-fidelity Modeling at SNS

« A native CAD model is usually not suited for DAGMC-MCNP6

— Loose definition of geometry in CAD vs. water-tight requirement in MC
> Gaps
> Overlaps

— Small details not necessarily needed

— Fluid space not defined
« CAD model must be fixed and checked before DAGMC-MCNPé6 run
(spacecizmh @ CUBIT /' DAGMC-MCNP6)
Imprint & merge

CAD designs
(Pro-E, Solidworks,
CREO etc) Export HDF5 files

Flow-chart of CAD model preparation for a DAGMC-MCNP6 run

Make
watertight

Create graveyard

Simplify y Y Assign materials

Fill the voids

Loss of
particle
check

Check
geometr
error

Fix geometry error
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DAGMC Model for Monte Carlo Simulation
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PPU target of final design
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Target design comparisons
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Calculation method

» Revised TMESH tally, which was modified by F. X. Gallmeier to allow tallying energy
deposition, flux etc. for a specific material within a mesh element

« MCNPX/MCNPé not able to calculate the volume of a specific material within a mesh
element, therefore a statistical method of volume calculation has to performed to
correct the volume of that specific material. Assuming Material 1 is stainless steel

- 1."mesh3 total mater 1" 2> Edepthominal
- 2."rmeshl:n flux mater 1" > Vcorr
- 3. Edept = Edepthomina / VCoOIT
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Energy deposition results - nominal
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Energy deposition results
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Summary

« For the studying of SNS targets, the more realistic incident
proton beam profiles were constructed from the harp
measurement

« The traditional modeling of targets at SNS phased info high-
fidelity modeling:

- Greatly expands the ability of handling complicated geometry in
modeling

— Significantly improves the accuracy of the model

- Reduce the response time to the engineering analysis requests
o for the target modeling, it is reduced to be < 1 week

* In future, high-fidelity modeling using unstructured mesh may
expand our capability for the neutronics study
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