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“Automated” “Autonomous”
Suited to dynamic or 
uncertain environment

Suited to environment with 
well-defined tasks

Ability to learn, decide, and adapt

Ability to repeat pre-defined tasks precisely & reliably

Assembly line Self-driving car

Automated 
experiments at 
beamlines, via 
sample robot, 
Bluesky, analysis 
pipelines, etc.

Autonomous

experiments at 
beamlines?
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Autonomous experiments: Why?

• Data rates at light sources are increasing fast!

à Humans making experimental decisions is becoming the bottleneck.

à Machines can analyze data and make decisions about what to do next 
while the experiment is running.

• Machines can efficiently search for the most interesting measurements to 
make, and make discoveries that humans would have missed or take 
longer to get to.

Bright x-ray source Fast detectors
Automation
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Modern materials are complex

Goal: Beamlines that autonomously and intelligently explore materials 

Use artificial intelligence (AI) and machine learning (ML) to run the experiments 
and make decisions, and leave the experimenter to focus on the big picture!

From Characterization Instrument to Autonomous Material Discovery Facility

010010111001…

“There is nothing so useless as doing efficiently that 

which should not be done at all.” – Peter Drucker
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M. Noack et al., Sci. Rep. 9, 11809 (2019); Sci. Rep. 10, 1325 (2020)

Bluesky

(NSLS II)

SciAnalysis

(CFN)

gpCAM

(CAMERA)

Our First Autonomous X-ray Scattering Experiment
NSLS-II 11-BM CMS 

(i) Grid scans (non-AE): Pre-programed exhaustive mapping

(ii) Survey (AE): Peak intensity I(x,y) modeled, and locate (x,y) with highest 
uncertainty for next measurement

à Suited to quick survey of overall landscape

(iii) Edge-seeking (AE): Uncertainties are weighted by local model gradients

à Suited to boundary detection and characterization

Coffee stain-like 
pattern formed by a 
drop-cast film of 
nanoparticle 
superlattices

Grid (non-AE) AE: survey AE: edge-seeking
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M. Noack et al., Sci. Rep. 9, 11809 (2019); Sci. Rep. 10, 1325 (2020)

Bluesky

(NSLS II)

SciAnalysis

(CFN)

gpCAM

(CAMERA)

Grid (non-AE) AE: survey AE: edge-seeking
N = 150

Grid (non-AE) AE: survey AE: edge-seeking
N = 640

Our First Autonomous X-ray Scattering Experiment
NSLS-II 11-BM CMS 

(i) Grid scans (non-AE): Pre-programed exhaustive mapping

(ii) Survey (AE): Peak intensity I(x,y) modeled, and locate (x,y) with highest 
uncertainty for next measurement

à Suited to quick survey of overall landscape

(iii) Edge-seeking (AE): Uncertainties are weighted by local model gradients

à Suited to boundary detection and characterization
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Autonomous Decision Algorithms (gpCAM)

• Decoupled from data analysis (“dimensional reduction”)

à independent of experimental techniques

• In simplest form, domain knowledge-agnostic à broad applicability

- Inputs: Real-time analysis-derived quantities or “signals” (e.g., scattering intensity) 
as a function of experimentally controlled parameters (e.g., sample position)

- Outputs: Experimental parameter values for next measurements

• Multiple input signals can be used to steer an experiment (one model per signal) 

e.g., peak intensity, grain size, degree and orientation of anisotropy, etc.

• Use Gaussian Processes in Bayesian Optimization framework

- GP to estimate a surrogate model (SM) and uncertainty distribution (UD), 
based on existing data.

- Maximize acquisition function based on UD and/or SM to pick the location 
for next high-value measurements.  

M. Noack et al., Sci. Rep. 9, 11809 (2019); Sci. Rep. 10, 1325 (2020); Sci. Rep. 10, 17663 (2020) 

https://gpcam.lbl.gov/
https://github.com/lbl-camera/gpCAM

https://gpcam.lbl.gov/
https://github.com/lbl-camera/gpCAM
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• Different steering modes:

- Quick survey: Acquisition Function (AF) = uncertainty distribution (UD)

- Feature optimization: AF = UD weighted by model values 

- Boundary detection: AF = UD weighted by model gradients

- Cost optimization: AF = UD weighted by experimental cost 

e.g., time

small < large sample translation  <  robotic sample exchange  <  making new samples 

Sensitive to local data variation

Blade coater for thin film 
fabrication and annealing

In-vacuum sample exchanger

Block copolymer combi. film 
repeat spacing

Annealing temperature (ºC)
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Autonomous Decision Algorithms (gpCAM)
M. Noack et al., Sci. Rep. 9, 11809 (2019); Sci. Rep. 10, 1325 (2020); Sci. Rep. 10, 17663 (2020) 
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Autonomous Exploration of Material Parameter Space

M. Noack et al., Sci. Rep. 10, 17663 (2020); user collaboration: J. Streit, R. Vaia (AFRL)

X-ray scattering

Coating 
direction

f

X-ray

Ordered grain

• N < 500 (4 hrs): Survey 

• N > 500 (11 hrs): Feature optimization 

Gridding out at max resolution would have taken 11 days!

Grain 
alignment

Hydrophilic ß Substrate à Hydrophobic
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Monolayer

Sub-monolayer

Thick film
high

low

Optimal coating speed identified for 
high degrees of nanoscale ordering

Combinatorial 
blade-coated film 
of polymer-grafted 
nanorods

NSLS-II 11-BM CMS 

SAXS exploration of nanoscale ordering in blade-coated 
polymer-grafted nanorod film User collaboration: J. Streit, R. Vaia (AFRL)
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• Orientation of anisotropy fpeak
• Degree of anisotropy h (0 < h

< 1, from peak sharpness)

• d-spacing of periodic 
structure d = 2p/qpeak

• Grain/domain size x
(from peak width)

Real-time data processing and analysis
via SciAnalysis: https://github.com/CFN-softbio/SciAnalysis

Raw SAXS image
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https://github.com/CFN-softbio/SciAnalysis
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14 nm dia. silica NP in PEO

1 mm

User collaboration: A. Jimenez, A. Krauskopf, S. Kumar (Columbia U.)

POM image of 
PEO spherulites

Bar length: degree of anisotropy in NP ordering
Bar direction: parallel to NP layers

• Polymer crystallization influences NP ordering. 

• Direct evidence that NP layers run radially from the nucleation center of each spherulites.

NSLS-II 12-ID SMI Autonomous Exploration of Real-Space Material Heterogeneity
Microbeam SAXS mapping of polymer/nanoparticle composite films
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NSLS-II 12-ID SMI 
Toward “Domain-Knowledge-Aware” Autonomous Decision Making

User collaboration: J. Seppala, T. Martin (NIST)

Printing direction

• Hybrid mapping

- y: heterogeneity along stacking direction

- x: gradient in processing parameter (print speed)

• Evidence for shear-induced polymer alignment 
promoting crystal growth

• Incorporating knowledge about existence of periodicity 
(along y) yields a better surrogate model faster

Threshold print speed 
for high crystallinity
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Gaussian Process (GP) 
with standard kernel

GP with periodic 
kernel along y

Microbeam WAXS mapping of 3D-printed 
semicrystalline polymer (PLA) filaments
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Ongoing/Future Work
• Roll out to other beamlines and techniques

• Apply to in-situ material processing by integrating in-

situ sample environments and ancillary/proxy non-x-
ray probes into autonomous loop 

• ML-accelerated data analysis (e.g., instant feature 
recognition and classification of x-ray data to guide 
downstream analysis)

• Enhance decision algorithms to leverage materials 
knowledge, theory, simulations to guide experiments

New 3D printer platform 
(L. Wiegart et al., NSLS II)

Photothermal annealer 
(CFN & U. Warsaw)
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Additional thoughts
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Where autonomous experiments (AE) could be useful?
(Materials science perspective)

For materials with a lot of existing knowledge or relatively restricted sample space to explore, 
automated experiments may be the better choice than AE. 

But AE can be very effective for studying:

• New/novel materials for which a lot is unknown.

• Structure/property of materials involving large and complex material space 
(e.g., many components, many processing variables).

• Materials under dynamic environment where one wants to adaptively explore, understand, 
and control material processes toward unexpected/optimal structure/functions.
(“in-situ/operando,” “out-of-equilibrium,” “kinetic pathway,” “metastable/transient,” etc.)
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Hierarchy of Autonomous Decision Making
e.g., Navigate between different steering modes to suit experimental needs

Stage 1: Quick survey to 
grasp overall landscape 

Stage 2: Detect and 
characterize boundaries 
(e.g., phase boundaries)

Stage 3: Pinpoint target feature  
(e.g., maximum grain size)

Measure

AnalyzeDecide

• How do we leverage human-machine interactions in hierarchical decision-making?

e.g., human organization

…

…

Facility Director

Division X Director

Group A
Lead

Staff A1
Staff A2

…

Group B
Lead

Staff B1
Staff B2

…

Group C
Lead

Staff C1
Staff C2

…

Division Y Director

• How should hierarchical decision-making by machines be organized and managed? 

• Division of labor

• Autonomy and good decisions are important at 
every level

• Micromanaging hampers momentum: “Hire the 
best people, get out of the way, let them do what 
they are good at”

à Applicable to organizing machine 
decisions, esp. with advances in HPC?

Decisions

Task/detail-
oriented

Big picture
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Role of beamline scientists, users, …

Automation allowed us to expand the scope of beamline 
experiments.

Similarly, AE will allow beamline scientists and users to:

• Get involved more deeply into scientific aspects of research 

• Design more ambitious experiments and manage them at a 
higher level

• Develop new capabilities toward enhancing our facilities 
(e.g., addressing data analytics challenges) to attract/pursue 
impactful research projects/programs

Autonomous Experiments (AE) are meant to not replace, but liberate and empower
beamline scientists and users.

An exhausted user at NSLS (ca. 1999)

AE beam time at NSLS II (Nov. 2019)
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In the end, it’s the people who make things happen!
“The only thing we know about the future is 

that it will be different…   The best way to 

predict the future is to create it.” 
– Peter Drucker

“The path to success … is to form high-

performing teams and give them the 

resources and freedom to do great things.” 
– Bill Campbell• BNL/NSLS-II
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Karen Chen-Wiegart
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Thin-film substrate holders for GISAXS/GIWAXS 
(~10 substrates per holder)

Sample holders for transmission 
SAXS/WAXS (15 positions per holder)

Sample exchanger (left) and garage (right) 
inside sample chamber

High Throughput via Robotic Sample Exchange 
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T-annealing  
(GI-SAXS/WAXS)

Linkam thermal / tensile / shear stagesT-annealing 
(transmission)

Solvent-vapor 
annealing cell

In-house developed/commercial

Instec T stage

Examples of Available In-Situ Setups

CFN IR-laser-based 
photothermal annealer

Blade coater for solution-
phase thin film fabrication 

and T-annealing

Humidity chamber


