
The Bluesky Project Contributors

Bluesky originated at National Synchrontron Light
Source II

("Giant X-ray beam")

NSLS-II is a "User Facility"

Scientific Staff spend 20% time on experiments, the
rest on user support
Users mail samples or visit for ~1–10 days
28 active instruments ("beamlines"), 60-70 planned

MOTIVATIONMOTIVATION

Build so�ware that enables collaboration and
specialization

Each beamline is one of a kind by design, so no
so�ware can be a complete solution for everyone.
Aim to enable beamlines to share yet also support
their unique needs.
Use so�ware design patterns that encourage
building on a shared core.

Bluesky is designed in service to data analysis

When analyzing data we want....

To easily find the data we're looking for.
Access to that data, not particularly caring where it's
stored or in what file format.
Well-structured data marked up with relevant
context, to support easy and sometimes automated
batch analysis.
Seamless integration with popular data analysis
tools.

Bluesky may be used from IPython or from graphical
user interfaces

At first we targeted command-line usage in IPython,
thinking of users coming from SPEC.
Staff at our facility and at other facilities have built
their own graphical applications that interface to
parts of Bluesky. (See following slides.)
We are developing a toolbox of reusable
components for building graphical interfaces for
data acquisition, search, access, and visualization,
supporting:

Desktop applications
Jupyter
Web applications

Bluesky is a bridge to the open-source ecosystem

Figure Credit: "The Unexpected Effectiveness of Python in Science", PyCon 2017

Bluesky is written in Python, which is very popular

Figure Credit: Stack Overflow Blog https://stackoverflow.blog/2017/09/06/incredible-growth-python/

Bluesky is designed for the long term

Make it easy to keep file-reading and -writing code
separate from scientific code.
Support streaming (live-updating) visualization and
processing, and adaptive experiment steering.
Integrate well with web technologies and be cloud-
friendly.
But also meet users where they are!

Bluesky has individually useful core components

Bluesky Run Engine: experiment orchestration and
data acquisition

Emits data and metadata in a streaming fashion
as it's available during acquisition
Centrally manages any interruptions
(pause/resume), failure modes, etc.

Bluesky Plans: experiment sequences (e.g. scans)
Designed with adaptive sequences in mind from
the start
Leaves room for hardware-triggered scanning —
interesting new work happening here

O h d i t f t h d

Ophyd: interface to hardware
Suitcases

streaming export to popular formats (e.g. CSV,
TIFF, …. NeXus support in progress)
or streaming save lossless storage (e.g. MongoDB,
msgpack — plus external large arrays)

Tiled and Databroker: search and access saved data

Other facilities have adopted Bluesky piecemeal,
adapting, extending, or replacing components to meet

their requirements.

List of facilities known to use Bluesky (1 of 2)

NSLS-II (used at 26/28 beamlines)
LCLS (widespread use) and SSRL (one or two
instruments)
APS (scaling up from a couple beamlines to dozens)
Australian Synchrotron (several beamlines)
ALS (at least one beamline, also scaling up)
Diamond (evaluating, but has made significant
development investments)

List of facilities known to use Bluesky (2 of 2)

Canadian Light Source (at least one)
PSI (evaluating, not yet committed to adoption)
Pohang Light Source II
Various academic labs
BESSY II

USER FACILITIES HAVE A DATA PROBLEMUSER FACILITIES HAVE A DATA PROBLEM
We can learn a lot from particle physics, astronomy,

and climate science....but we have some unique
problems too.

What changed to make data problems harder?

Sources got brighter; detectors got larger and faster:
greater data velocity and volume.
This exposes the variety problem we have at user
facilities:

Large and changing collection of instruments
Wide span of data rates, structures, and access
patterns
Mix of well-established data processing
procedures and original, improvised techniques

Multi-modal analysis makes this an N^2, ... problem.

"Big data is whatever is larger
than your field is used to."

A spot check for data volume at an NSLS-II Project Beamline so far...

What changed to make data problems easier?

HPC is becoming more accessible.

One inviting example:

Jupyter as a familiar, user-friendly portal
Dask for familiar numpy/pandas idioms distributed
over many nodes

Also: Commodity cloud-based tools

jupyter.nersc.gov

Lately it's become more practical to work openly and
collaboratively....

across instruments within a facility
between facilities
with outside communities with similar data
problems (e.g. climate science)

...which is not a new idea, but ease-of-use matters.

STATUS QUO:STATUS QUO:
DATA AND METADATA ARE SCATTEREDDATA AND METADATA ARE SCATTERED
Some critical context is only in people's heads
Many file formats (tif, cbf, Nexus, other HDF5,
proprietary, ...)
meta_data_in_37K_fname_005_NaCl_cal.ti
"Magic numbers" buried in analysis tools
Notes in paper notebooks

What's the problem?

Not machine-readable or searchable
Relationship between any two pieces of data
unclear
Inhibits multi-modal work
Inhibits code reuse
Not streaming friendly

What do we need to systematically track?

Experimental Data

Analysis needs more than "primary" data stream:
Timestamps
Secondary measurements
"Fixed" experimental values
Calibration / beam-line configuration data
Hardware settings
Hardware diagnostics
Physical details of the hardware

Sample Data

What is the sample?
What is the contrast mechanism?
Why are we looking at it?
How was it prepared?

Bureaucratic & Management Information

Where is the data and how to get it?
Who took the data?
Who owns or can access the data?
How long will we keep the data?

DESIGN GOALSDESIGN GOALS
both technical and sociological

for an end-to-end data acquisition and analysis
solution that leverages data science libraries

Technical Goals

Technical Goals

Generic across science domains

Technical Goals

Generic across science domains
Lightweight

Technical Goals

Generic across science domains
Lightweight
Put metadata in a predictable place

Technical Goals

Generic across science domains
Lightweight
Put metadata in a predictable place
Handle asynchronous data streams

Technical Goals

Generic across science domains
Lightweight
Put metadata in a predictable place
Handle asynchronous data streams
Support multi-modal: simultaneous, cross-
beamline, cross-facility

Technical Goals

Generic across science domains
Lightweight
Put metadata in a predictable place
Handle asynchronous data streams
Support multi-modal: simultaneous, cross-
beamline, cross-facility
Support streaming

Technical Goals

Generic across science domains
Lightweight
Put metadata in a predictable place
Handle asynchronous data streams
Support multi-modal: simultaneous, cross-
beamline, cross-facility
Support streaming
Cloud friendly

Technical Goals

Generic across science domains
Lightweight
Put metadata in a predictable place
Handle asynchronous data streams
Support multi-modal: simultaneous, cross-
beamline, cross-facility
Support streaming
Cloud friendly
Integrate with third-party (meta)data sources

Sociological Goals Sociological Goals

Overcome "not-invented-here"-ism.

Sociological Goals

Overcome "not-invented-here"-ism.
Make co-developed but separately useful
components with well-defined boundaries which
can be adopted piecemeal by other facilities.

Sociological Goals

Overcome "not-invented-here"-ism.
Make co-developed but separately useful
components with well-defined boundaries which
can be adopted piecemeal by other facilities.
Drawing inspiration from the numpy project,
embrace protocols and interfaces for
interoperability.

Bluesky is designed for Distributed Collaboration

Facilities and instruments within a facility can share
common components and benefit from a share
knowledge base and a shared code base
While also having room to innovate and specialize
to suit their own priorities and timelines.
The scientific Python community is an example of
how this can work well.
Use the parts of Bluesky that work for you a la carte,
extend them, or replace them.

Bluesky is designed for Distributed Collaboration
(cont.)

This is not an all-or-nothing framework that you
have to buy into; it's a mini-ecosystem of co-
developed but individually useful tools that you
can build on.
It's all in Python. Some beamline staff and partner
users have built on it.

BLUESKY ARCHITECTUREBLUESKY ARCHITECTURE

Layered design of Python libraries that are:

co-developed and compatible...
...but individually usable and useful
with well-defined programmatic interfaces

Looking at each component, from the bottom up....

Device Drivers and Underlying Control Layer(s)

You might have a pile of hardware that communicates
over one or more of:

Experimental Physics and Industrial
Control System (EPICS)
LabView
Some other standard
Some vendor-specific, one-off serial or
socket protocol

Ophyd abstracts over the specific control layer.

Ophyd: a hardware abstraction layer

Put the control layer behind a high-level interface
with methods like trigger(), read(), and
set(...).
Group individual signals into logical "Devices" to be
configured and used as one unit.
Assign signals and devices human-friendly names
that propagate into metadata.
Categorize signals by "kind" (primary reading,
configuration, engineering/debugging).

Bluesky abstracts over hardware. Bluesky: an experiment specification and
orchestration engine

Specify the logic of an experiment in a hardware-
abstracted way. Bluesky says a detector should be
triggered; ophyd sorts out how.
First-class support for adaptive feedback between
analysis and acquisition.
Data is emitted in a streaming fashion in standard
Python data structures.
Pause/resume, robust error handling, and rich
metadata capture are built in.

Mix and match (or create your own) plans...

...and streaming-friendly viz...

...and streaming-friendly analysis High Throughput

Bluesky can process 30k messages/second
("message" = trigger, read, save, ...).
Typically, the vast majority of its time is spent
waiting for hardware to move or acquire.
To go faster than that, use kickoff ("Go!") —
complete ("Call me when you're done.") —
collect ("Read out data asynchronously.").

Suitcase encodes documents for storage or export.

Suitcase: store in any database or file format

Lossless storage: MongoDB, msgpack, JSONL
Lossy export: TIFF, CSV, specfile,
Documentation on how to write a suitcase for your
own format
Use any transport you like. Write to disk (ordinary
files), memory buffer, network socket,

DataBroker provides search, access to stored data.

DataBroker takes the hassle out of data access.

An API on top of a database and/or file.
Search user-provided and automatically-captured
metadata.
Exactly the same layout originally emitted by
Bluesky, so consumer code does not distinguish
between "online" and saved data

Keep I/O Separate from Science Logic!

Interfaces, not File Formats

The system is unopinionated about data formats.
Can change storage with no change to consumer
code.
Any file I/O happens transparently: the user never
sees files, just gets data in memory (e.g. a numpy
array, a mapping with labeled metadata).
Your detector writes in a special format?
Register a custom reader.

EMBRACE INTERFACESEMBRACE INTERFACES
The most important aspect of the Bluesky architecture

are the well-defined protocols and interfaces.

Interfaces enable:

Interoperable tools without explicit coordination
Unforeseen applications

Interface Example: Iteration in Python
for x in range(10):

 ...

class MyObject:

 def __iter__(self):

 ...

for x in MyObject():

 ...

Interface Example: numpy array protocol
import pandas

import numpy

df = pandas.DataFrame({'intensity': [1,1,2,3]})

numpy.sum(df)

Interfaces in Bluesky

Event Model — connects data producers to
consumers
Message protocol — connects experiment
sequencing with inspection and execution
Ophyd hardware abstraction — connects what you
want to do to how to do it

EMBRACE LAYERED EXTENDABLE CODEEMBRACE LAYERED EXTENDABLE CODE

EMBRACE COMMUNITY OPEN-SOURCEEMBRACE COMMUNITY OPEN-SOURCE
PROCESSESPROCESSES

Work openly

Use version control.
Make new work public from the start.
Put ideas and roadmaps on GitHub issues where
others can search, read, comment.

Build a lasting collaboration

Maintainers: per repo, make day-to-day decisions
and set processes as appropriate to the repo
Technical Steering Committee: arbitrate when
maintainers cannot reach rough consensus
Project Advisory Board: management-level
stakeholders, oversee big-picture priorities
Currently in process of assembling these groups

Governance model (in process)

Automated tests are essential

They enable people to try new ideas with confidence.

Ensure that we don't accidentally break our ability
to recreate important results.
Ensure that my "improvement" won't accidentally
break your research code by protecting it with tests
that verify key results.
Continuous Integration services ensure the tests
always get run on every proposed change.

Good, current documentation is essential.

It convinces people that it might be easier to learn your
thing than to write their own.

Complete installation instructions
Fully worked examples
Tools for simulating data or public links to example
data sets

EVENT MODELEVENT MODEL

Minimalist and Extensible

Every document has a unique ID and a timestamp.
Specific domains, facilities, collaborations, research
groups can overlay schemas implementing their
own standards (e.g. ,).SciData PIF

R u n S t a r t : M e t ad a t a a b o u t t h i s r u n ,
in c l u d i n g e v e r y t h i n g w e k n o w i n
a d v an c e : t i m e , t y p e o f e x p e r i m e n t ,
s a m p l e i n f o . , e t c .

E v e n t D e s c r i p t o r : M e t ad a t a a b o u t t h e
r e a d i ng s i n t h e e v e n t (u n i t s , p r e c i s i o n ,
e t c .) a n d t h e r e l e v a n t ha r d w ar e

E v e n t : R e a d i ng s a n d t i m e s t a mp s

R u n St o p : A d d i ti o na l m e t ad a t a k n o w n
a t t h e en d : w h a t t i m e i t c o m p l e t e d a n d i t s
e x i t s t a t us (s u c c e s s , a b o r t e d , f a i l e d) E x a m p l e 1 : S i m p l e s t P o s s i b l e R u n

Do n o t h i n g - t h i s i s t h e s i m pl e s t p o s s i bl e e x p e r i m e n t !

E x a m p l e 2 : A S i m p l e S c a n

Re a d m o t o r p o s i ti o n
a n d t r ig g e r a n d
r e a d d e t e c t o r (s)

Tr ig g e r
a n d r e a d

Mov e a
m o t o r Mov e et c .

Tr ig g e r
a n d r e a dMov e et c .

et c .

Re a d m o t o r p o s i ti o n
a n d t r ig g e r a n d
r e a d d e t e c t o r (s)

Mov e a
m o t o r

Mo n i t o r b e a m
c u r r e n t

Re c o r d
n e w v a l u e

et c .
Re c o r d

n e w v a l u e
Mo n i t o r

t em p e r a t u r e

E x a m p l e 3 : A s y n c h r o no u s l y M o n i t o r D u r i n g a S c a n

Bluesky emits documents, streamed or in batches

Bluesky is responsible for organizing metadata and
readings from hardware into valid documents.
Sometimes the readings come one at a time and
Events are emitted steadily during an experiment.
In special applications (commonly, fly scans) the
readings come from the hardware in bulk and
Events are emitted in batch(es).

FLY SCANSFLY SCANS

For high performance fly scanning, coordination is
needed "below" Bluesky in hardware.
Bluesky simply provide a way to:

Configure
Start ("Kickoff")
Incrementally collect data ("Collect")
Initiate or await completion ("Complete")

The status quo in Bluesky is very coarse.
Highly flexible (good place to start...)
But each fly scan application is built from scratch
(leads to duplicated efforts)

This is an area of very active development is Bluesky.

Coordinated efforts underway at:

Diamond Light Source
Australian Synchrotron
NSLS0II

Diamond has invested a decade of research into fly-
scanning in previous Python projects.
Prototype from Diamond applying this expertise in a
Bluesky-compatible way:
Work in progress to integrate this with Bluesky itself:

Bluesky

bluesky PR#1502

ADAPTIVE EXPERIMENTSADAPTIVE EXPERIMENTS

Feedback Paths

prompt / real-time analysis to steer experiment
"human-in-the-loop"
"computer-in-the-loop"
data quality checks

Scales of Adaptive-ness

1. below bluesky & ophyd
2. in bluesky plans, but without generating
3. providing feedback on a per- basis
4. providing feedback on a per-run / basis
5. providing feedback across many runs
6. asynchronous and decoupled feedback

event
event

start

below bluesky & ophyd

timescale: ≫ 10Hz
very limited time budget for analysis
very limited access to data
tightly coupled to hardware (PID loop, FGPA)
expensive to develop

in bluesky plans, but without generating

timescale: 1-10Hz
limited time budget for analysis
limited access to data
logic implemented in Python in acquisition process
coupled to hardware
can be used for filtering

event

providing feedback on a per- basis

timescale: 1-5s
modest time budget for analysis
access to "single point" of data (& cache)
run in or out of acquisition process

event providing feedback on a per-run / basis

timescale: 5-60s
modest time budget for analysis
access to "full scan" data (& cache)
run in or out of acquisition process

start

providing feedback across many runs

timescale: ∞
arbitarily compute budget
access to all historical data
muliti-modal

asynchronous and decoupled feedback

Is the beam up?
Is the shutter open?
Is the sample still in the beam?
Do we have enough data on this sample?
Is the sample toast?

Docs with theory and examples:

bluesky/bluesky-adaptive

"QUEUE SERVER": AN EDITABLE"QUEUE SERVER": AN EDITABLE
CONTROL QUEUECONTROL QUEUE

Bluesky Queue Server

Support remote and multi-tenant data acquisition
Documentation:
Has been used for user experiments
Still under rapid development

bluesky-queueserver

Bluesky's first target was users coming from SPEC

New Capability: Editable Control Queue

Provides an editable queue of Bluesky plans to ru n
All the same Bluesky plans (experiment procedures)
work
All the same Ophyd devices work
Can be easily populated from a user's Excel
spreadsheet
You can safely mutate—rearrange and edit items—
during acquisition
Well suited to graphical interfaces

Separation between user app and queue server

If app is closed or crashes, acquisition continues.
Just restart app to reconnect.
The app can provide access controls

Guiderails (avoid too many options)
Security

App can run on different machine from queue
Many client programs can be used simultaneously to
monitor or control the queue (web, desktop GUI,
commandline)

SURVEY OF COMMUNITY UISURVEY OF COMMUNITY UI
DEVELOPMENTSDEVELOPMENTS

Various institutions are building graphical user
interfaces on Bluesky.

pyStxm at Canadian Light Source (Russ Berg)

Desktop-based (Qt)
Formerly had custom scanning engine
Refactored to use Bluesky
RussBerg/pyStxm3

GUI for SAXS at Australian Synchrotron (Stephen
Mudie)

Web-based (React)
Code partially available at

Plans to be fully open in a week or so
AustralianSynchrotron/saxs_beamline_library_react

GUI for COSMIC at Advanced Light Source (Xi-CAM
Team)

Desktop-based
Plugin to the Xi-CAM framework (Qt)
Xi-CAM/Xi-cam.Acquire

Finally, various one-off solutions developed by
beamline and/or Controls staff at NSLS-II

"X-Live" (NSLS-II ISS & QAS)
"xpdacq" (NSLS-II XPD & PDF)
"XFP High-Throughput Multi-Sample Holder" (NSLS-
II XFP)
"BS-Studio" (NSLS-II ESM)

We intend to guide a systematic refactor of these onto
components from bluesky-queueserver and bluesky-

widgets.

BLUESKY WIDGETSBLUESKY WIDGETS
A new project aimed at sharing GUI components built

on Bluesky interfaces

bluesky/bluesky-widgets

Goals

A component library, not an extensible application
Ships runnable examples, but instruments should
build their own
Integrate with existing applications (napari, PyFAI,
Xi-CAM, ...)
All actions can be performed from a terminal or run
headless
Model is framework-agnostic. Front-ends will
include Qt, Jupyter.

Examples of integrating Data Broker search into
existing so�ware...

Model can be manipulated from IPython terminal

Search Data Broker from napari (N-dimensional image
viewer)

Search Data Broker from PyFAI (powder diffraction
so�ware)

Search Data Broker from Xi-CAM

PAYOFF:PAYOFF:
EASY AND ROBUST INTEGRATION WITHEASY AND ROBUST INTEGRATION WITH

EXISTING SOFTWAREEXISTING SOFTWARE

Proof of concept:
In this scan, each step is determined adaptively in

response to local slope.

The system is designed to make fast feedback easy to write.

LCLS's project builds on this to
automatically deliver the photon beam to a number of

experimental hutches at LCLS.

Skywalker
A stream of images from a linear detector is

reconstructed into a volume using tomopy (APS).

It took one TomoPy developer and one Bluesky developer less than 20 minutes to write this.

A Gaussian is fit to a stream of measured data using
the Python library lmfit (from U. Chicago / APS).

The GUI / plugin framework from CAMERA
has adopted Bluesky's Event Model

for its internal data structures.

Xi-cam 2

Real-time Data Analysis at APS

Data is streamed from APS to Argonne Leadership Compute Facility. Results are immediately visualized at APS.

LINKSLINKS
Home Page and Documentation:

Code and Arguments about Code:

Live, Public Demo Deployment (using Jupyter):

These Slides:

blueskyproject.io

github.com/bluesky

try.nsls2.bnl.gov

blueskyproject.io/bluesky-slides

