Bluesky originated at National Synchrontron Light
Source ll

W/ IVCTONYy

The Bluesky Project Contributors

("Giant X-ray beam")

NSLS-Il is a "User Facility"

e Scientific Staff spend 20% time on experiments, the
rest on user support

e Users mail samples or visit for ~1-10 days

e 28 active instruments ("beamlines"), 60-70 planned

Build software that enables collaboration and
specialization

e Each beamline is one of a kind by design, so no
MOTIVATION software can be a complete solution for everyone.
e Aim to enable beamlines to share yet also support
their unique needs.
e Use software design patterns that encourage
building on a shared core.

Bluesky may be used from IPython or from graphical

Bluesky is designed in service to data analysis user interfaces

When analyzing data we want....

To easily find the data we're looking for.

Access to that data, not particularly caring where it's
stored or in what file format.

Well-structured data marked up with relevant
context, to support easy and sometimes automated
batch analysis.

Seamless integration with popular data analysis
tools.

e At first we targeted command-line usage in IPython,

thinking of users coming from SPEC.

Staff at our facility and at other facilities have built
their own graphical applications that interface to
parts of Bluesky. (See following slides.)

We are developing a toolbox of reusable
components for building graphical interfaces for
data acquisition, search, access, and visualization,
supporting:

= Desktop applications

= Jupyter

= Web applications

Bluesky is a bridge to the open-source ecosystem

A N, k Nl L (and
D Q%M Zz‘é g M r‘?\gny.
A\\\—4 —

Sun many

astro .
i Network.,\. more)

— SymPy © e
[S|, ™ @) sskitimage

@ tearn & matplotlib @,glc
':}Bokeh pandas Mt i A

y 1 <

arra _

g%’ y a Nun‘lpy Jupyter
IPLyl: =

IPython

o @ python

DASK

Figure Credit: "The Unexpected Effectiveness of Python in Science", PyCon 2017

Bluesky is written in Python, which is very popular

Growth of major programming languages
Based on Stack Overflow question views in World Bank high-income countries

Figure Credit: Stack Overflow Blog https://stackoverflow.blog/2017/09/06/incredible-growth-python/

Bluesky has individually useful core components

e Bluesky Run Engine: experiment orchestration and
data acquisition
» Emits data and metadata in a streaming fashion
as it's available during acquisition
= Centrally manages any interruptions
(pause/resume), failure modes, etc.
* Bluesky Plans: experiment sequences (e.g. scans)
» Designed with adaptive sequences in mind from
the start
» Leaves room for hardware-triggered scanning —
interesting new work happening here

Bluesky is designed for the long term

Make it easy to keep file-reading and -writing code
separate from scientific code.

Support streaming (live-updating) visualization and
processing, and adaptive experiment steering.
Integrate well with web technologies and be cloud-
friendly.

But also meet users where they are!

Ophyd: interface to hardware

Suitcases

= streaming export to popular formats (e.g. CSV,
TIFF, NeXus support in progress)

» or streaming save lossless storage (e.g. MongoDB,
msgpack — plus external large arrays)

Tiled and Databroker: search and access saved data

Other facilities have adopted Bluesky piecemeal, List of facilities known to use Bluesky (1 of 2)

adapting, extending, or replacing components to meet e NSLS-II (used at 26/28 beamlines)
their requirements. e LCLS (widespread use) and SSRL (one or two

instruments)

e APS (scaling up from a couple beamlines to dozens)

e Australian Synchrotron (several beamlines)

e ALS (at least one beamline, also scaling up)

e Diamond (evaluating, but has made significant
development investments)

List of facilities known to use Bluesky (2 of 2)

USER FACILITIES HAVE A DATA PROBLEM

Canadian Light Source (at least one)

PSI (evaluating, not yet committed to adoption) We can learn a lot from particle physics, astronomy,
Pohang Light Source Il and climate science....but we have some unique

Various academic labs problems too.

BESSY Il

What changed to make data problems harder?

e Sources got brighter; detectors got larger and faster:
greater data velocity and volume.
e This exposes the variety problem we have at user
facilities:
= Large and changing collection of instruments
» Wide span of data rates, structures, and access
patterns
= Mix of well-established data processing
procedures and original, improvised techniques
e Multi-modal analysis makes this an N*2, ... problem.

What changed to make data problems easier?

"Big data is whatever is larger
than your field is used to."

Data Size at NSLS-Il CSX Beamline (approx.)

lative saved data [TB]

A spot check for data volume at an NSLS-II Project Beamline so far...

HPC is becoming more accessible.

One inviting example: jupyter.nersc.gov

e Jupyter as a familiar, user-friendly portal
e Dask for familiar numpy/pandas idioms distributed
over many nodes

Also: Commodity cloud-based tools

Lately it's become more practical to work openly and

collaboratively....

...which is not a new idea, but ease-of-use matte

99-80
September 8, 1999

For more information, contact:
Diane Greenberg, (631)344-2347, greenb@bnl.gov,
or Mona S. Rowe, (631) 344-5056, mrowe@hbnl.gov

Brookhaven Lab to Hold "Open Source/Open Science” Conference, Oct. 2

UPTON, NY - The U.S. Department of Energy’s Brookhaven National Laboratory will host a conference titled "Open Source/Open Science”
on Saturday, October 2, from 8 a.m. to 5 p.m. in the Laboratory's Berkner Hall. The public is invited to the conference, but pre-registration is
required. The fee for the conference is $25, which includes lunch.

Open Source software is free software, typically released over the Internet so that a broad audience can evaluate and test it. The conference
will bring together scientists and developers to exchange ideas about the use of Open Source software in scientific research at Brookhaven, as
well as at other laboratories and universities. Talks by invited speakers, posters, demonstrations and vendor exhibits will be featured at the
conference. Also offered will be tours of some of Brookhaven Lab's facilities in which Open Source software is used.

Among the talks and speakers featured at the conference will be:

- "What is Open Source?" Bruce Perens, the principal author of the Open Source definition

» "The Open Science Project,” by Dan Gezelter from openscience.org

- "Open Source Computing for BNL's Relativistic Heavy lon Collider,” Tom Throwe, Brookhaven Lab
» "Open Visualization Data Explorer,” Bill Horn, IBM

- "Open GL and GLX: High Performance 3D Graphics for Linux," Jon Leech, SGI

"ACEDB: An Open Source Object-Oriented Database," Lincoln Stein, Cold Spring Harbor Laboratory
"Open Source in Medical Imaging,” Bill Rooney, Brookhaven Lab
"Using Beowulf for Macromolecular Crystallography at the National Synchrotron Light Source," Malcolm Capel, Brookhaven Lab

Also, a panel of experts will discuss the issues that must be overcome by federal facilities in order to use and contribute to Open Source
technologies.

To register for the conference, go to the Web site http://openscience.bnl.gov, and follow the registration instructions. The registration deadline
is September 26. For more information, call (516)344-3582 or (516)344-5682.

Brookhaven National Laboratory is located on William Floyd Parkway (County Road 46), one-and-a-half miles north of Exit 68 on the Long
Island Expressway.

e across instruments within a facility

» between facilities

e with outside communities with similar data
problems (e.g. climate science)

bluesky / bluesky (fusedby~ 46 @Umwatch~ 23 sk Star 44 | YFork 39

<> Code Issues 80 Pull requests 21 Projects 0 wiki Security Insights Settings

experiment orchestration and data acquisition https://blueskyproject.io/bluesky/

python Manage topics
D 3,695 commits I 9 branches ©> 46 releases 12 24 contributors & View license

Branch: master ~ New pull request Create new file Upload files Find File Clone or download ~

awalter-bnl Merge pull request #1236 from mrakitin/fix-tocs-persistentdict - Latest commit 22ccg867 7 days ago

github DOC: removed checkbox section 3 years ago
bluesky Merge pull request #1232 from dmgawv/thread-problem-test 14 days ago

doc DOC: minor correction 8 days ago

The U.S. Department of Energy's Brookhaven National Laboratory creates and operates major facilities available to university, industrial and
government personne] for basic and applied research in the physical, biomedical and environmental sciences, and in selected energy
technologies. The Laboratory is operated by Brookhaven Science Associates, a not-for-profit research management company, under contract
with the U.S. Department of Energy.

.o

STATUS QUO:
DATA AND METADATA ARE SCATTERED

Some critical context is only in people's heads

Many file formats (tif, cbf, Nexus, other HDF5,
proprietary, ...)

meta data in 37K fname 005 NaCl cal.t
"Magic numbers" buried in analysis tools

Notes in paper notebooks

What do we need to systematically track?

What's the problem?

Not machine-readable or searchable
Relationship between any two pieces of data
unclear

Inhibits multi-modal work

Inhibits code reuse

Not streaming friendly

Experimental Data

Analysis needs more than "primary" data stream:
e Timestamps
Secondary measurements
"Fixed" experimental values
Calibration / beam-line configuration data
Hardware settings
Hardware diagnostics
Physical details of the hardware

Sample Data Bureaucratic & Management Information

What is the sample? e Where is the data and how to get it?
What is the contrast mechanism? e Who took the data?

Why are we looking at it? e Who owns or can access the data?
How was it prepared? e How long will we keep the data?

Technical Goals

DESIGN GOALS

both technical and sociological

for an end-to-end data acquisition and analysis
solution that leverages data science libraries

Technical Goals Technical Goals

e Generic across science domains e Generic across science domains
e Lightweight

Technical Goals Technical Goals

e Generic across science domains Generic across science domains

e Lightweight Lightweight

e Put metadata in a predictable place Put metadata in a predictable place
Handle asynchronous data streams

Technical Goals

Generic across science domains
Lightweight

Put metadata in a predictable place
Handle asynchronous data streams
Support multi-modal: simultaneous, cross-
beamline, cross-facility

Technical Goals

Generic across science domains
Lightweight

Put metadata in a predictable place
Handle asynchronous data streams
Support multi-modal: simultaneous, cross-
beamline, cross-facility

Support streaming

Cloud friendly

Technical Goals

Generic across science domains
Lightweight

Put metadata in a predictable place
Handle asynchronous data streams
Support multi-modal: simultaneous, cross-
beamline, cross-facility

Support streaming

Technical Goals

Generic across science domains
Lightweight

Put metadata in a predictable place
Handle asynchronous data streams
Support multi-modal: simultaneous, cross-
beamline, cross-facility

Support streaming

Cloud friendly

Integrate with third-party (meta)data sources

Sociological Goals Sociological Goals

e Overcome "not-invented-here"-ism.

Sociological Goals Sociological Goals

e Overcome "not-invented-here"-ism. e Overcome "not-invented-here"-ism.

» Make co-developed but separately useful » Make co-developed but separately useful
components with well-defined boundaries which components with well-defined boundaries which
can be adopted piecemeal by other facilities. can be adopted piecemeal by other facilities.

e Drawing inspiration from the numpy project,
embrace protocols and interfaces for
interoperability.

Bluesky is designed for Distributed Collaboration

Facilities and instruments within a facility can share
common components and benefit from a share
knowledge base and a shared code base

While also having room to innovate and specialize e Thisis not an all-or-nothing framework that you
to suit their own priorities and timelines. have to buy into; it's a mini-ecosystem of co-

The scientific Python community is an example of developed but individually useful tools that you
how this can work well. can build on.

Use the parts of Bluesky that work for you a la carte, e It's allin Python. Some beamline staff and partner
extend them, or replace them. users have built on it.

Bluesky is designed for Distributed Collaboration
(cont.)

“o\luquu

. Prompt feedback
Experimental procedure <«

Run Engine (bluesky) ——> “Documents” e Streaming wsuallzatlon

& processing/reduction
l I \ / T Documents
B LU E S KY ARC H I T E CT U R E Python abstractions Serialization Access saved data

of hardware (ophyd) (suitcase) (databroker/intake)

Set value Read value l /
Persistent storage

Control layer (e.g. EPICS) (Ordinary files on disk, .
a Database, and/or the Clou:)\ Interactive
I P data analysis
4 o q Yy

4
’, Large detectors Jupyter
» write directly to storage

Hardware - - g FTnt
4 Cal
(e.g. motors, detectors) \

Layered design of Python libraries that are:

e co-developed and compatible...
e ...butindividually usable and useful
o with well-defined programmatic interfaces

Looking at each component, from the bottom up....

Ophyd abstracts over the specific control layer.

“.\Iuocl(u

Experimental procedure <«

Prompt feedback

'
Run Engine (bluesky) > “Documents” 5 Streaming visualization

& processing/reduction
l I \ / IDummenb

Python abstractions Serialization Access saved data
of hardware (ophyd) (suitcase) (databroker/intake)

Set value Read value l / S‘:‘,
Persistent storage

Control layer (e.g. EPICS) (Ordinary files on disk, .
a Database, and/or the Clou:)\ Interactive
\ P4 data analysis
7 . ° -

Large detectors Jupyter (s
» write directly to storage

Hardware - g =
cam
(e.g. motors, detectors) - \

Device Drivers and Underlying Control Layer(s)

You might have a pile of hardware that communicates

over one or more of:

Experimental Physics and Industrial
Control System (EPICS)

LabView

Some other standard

Some vendor-specific, one-off serial or
socket protocol

Ophyd: a hardware abstraction layer

Put the control layer behind a high-level interface
with methods like trigger (), read(), and
set(...).

Group individual signals into logical "Devices" to be
configured and used as one unit.

Assign signals and devices human-friendly names
that propagate into metadata.

Categorize signals by "kind" (primary reading,
configuration, engineering/debugging).

Bluesky abstracts over hardware. Bluesky: an experiment specification and

&) uesky orchestration engine

Experimental procedure <« Promet feedback SpeCify the lOgiC Of an eXperiment in a ha rdWa re'
R Sowor —> — Shreaming visualization abstracted way. Bluesky says a detector should be

& processing/reduction .
l I \ / ' f triggered; ophyd sorts out how.
Python abstractions Seratzation pocess saved data First-class support for adaptive feedback between

of hardware (ophyd) (suitcase) (databroker/intake)

l I l / ‘ . analysis and acquisition.

Persistent storage

comsprsaepcs | OB) | Data is emitted in a streaming fashion in standard
l [e anavss Python data structures.

(Hardware -~ storage g = Pause/resume, robust error handling, and rich
e.g. motors, detectors) \
metadata capture are built in.

Mix and match (or create your own) plans...

count

...and streaming-friendly viz...

list_scan S n product).

rel list scan

List grid scan

rel list grid scan

rel grid scan

scan_nd

spiral

spiral_fermat

spiral_square

...and streaming-friendly analysis High Throughput

Bluesky can process 30k messages/second
("message" = trigger, read, save,...).
Typically, the vast majority of its time is spent
waiting for hardware to move or acquire.

To go faster than that, use kickoff ("Go!") —
complete ("Call me when you're done.") —
collect ("Read out data asynchronously.").

Suitcase encodes documents for storage or export.

“aluockn

Experimental procedure <«

Suitcase: store in any database or file format

'
Streaming visualization

_) . Lossless storage: MongoDB, msgpack, JSONL
Run Engine (b/uesky) = “Documents” > & processing/reduction

l I \ / x o Lossy export: TIFF, CSV, specfile,
Documentation on how to write a suitcase for your

Python abstractions Serialization Access saved data
of hardware (ophyd) (suitcase) (databroker/intake)

l . | | e own format
SN2 S o e MU) S Use any transport you like. Write to disk (ordinary
a Database, and/or the Cloud) Interactive_)
[| Saanalysis files), memory buffer, network socket,

Jupyter A

Hardware -~ R e g —
cam
(e.g. motors, detectors) \

DataBroker provides search, access to stored data.

“aluockn

Experimental procedure <«

DataBroker takes the hassle out of data access.

Streaming visualizaton e An APl on top of a database and/or file.

Run Engine (bluesky) = “Documents” —————————»

& processing/reduction . .
l I \ / x e Search user-provided and automatically-captured
Python abstractions Serialization Access saved data m eta d ata .

of hardware (ophyd) (suitcase) (databroker/intake) . . .
l I . 1 / o Exactly the same layout originally emitted by

Persistent storage

Contol ayer (0., EPICS) _(Ordimry fles o sk, <~ Bluesky, so consumer code does not distinguish
a Database, and/or the Cloud) Interactive_ .
l [. ata analysis between "online" and saved data

Hardware -
(e.g. motors, detectors)

Keep 1/0 Separate from Science Logic!

Interfaces, not File Formats

e The system is unopinionated about data formats. EMBRACE INTERFACES

e Can change storage with no change to consumer
code.

e Any file I/O happens transparently: the user never
sees files, just gets data in memory (e.g. a numpy
array, a mapping with labeled metadata).

» Your detector writes in a special format?

Register a custom reader.

The most important aspect of the Bluesky architecture
are the well-defined protocols and interfaces.

Interface Example: Iteration in Python

for x in range(10):

Interfaces enable:

class MyObject:

* Interoperable tools without explicit coordination SO)
» Unforeseen applications

for x in MyObject():

Interfaces in Bluesky

Interface Example: numpy array protocol e Event Model — connects data producers to
P consumers
4f = pandas.Datarrame({ intensity's [1,1,2,31}) » Message protocol — connects experiment
numpy - sum(df) sequencing with inspection and execution
e Ophyd hardware abstraction — connects what you
want to do to how to do it

—— SINGLE VSE
EXTENDABLE

EMBRACE LAYERED EXTENDABLE CODE 5

STL)FF TO DO

VOLCANDS

IOSERCODE
>/ >/ : EMBRACE COMMUNITY OPEN-SOURCE

STL)FF TO DO

,w PROCESSES

STL)FF TO DO

E ASE Of VSE

EASE OfF VSE

Work openly

e Use version control.

e Make new work public from the start.

e Putideas and roadmaps on GitHub issues where
others can search, read, comment.

Automated tests are essential

They enable people to try new ideas with confidence.

e Ensure that we don't accidentally break our ability
to recreate important results.

e Ensure that my "improvement"” won't accidentally
break your research code by protecting it with tests
that verify key results.

e Continuous Integration services ensure the tests
always get run on every proposed change.

Build a lasting collaboration

Governance model (in process)

Maintainers: per repo, make day-to-day decisions
and set processes as appropriate to the repo
Technical Steering Committee: arbitrate when
maintainers cannot reach rough consensus
Project Advisory Board: management-level
stakeholders, oversee big-picture priorities
Currently in process of assembling these groups

Good, current documentation is essential.

It convinces people that it might be easier to learn your
thing than to write their own.

e Complete installation instructions

e Fully worked examples

 Tools for simulating data or public links to example
data sets

EVENT MODEL

Run Start: Metadata about this run,
including everything we know in
advance: time, type of experiment,
sample info., etc.

Run Stop: Additional metadata known
at the end: what time it completed and its
exit status (success, aborted, failed)

Event: Readings and timestamps
Event Descriptor: Metadata about the

readings in the event (units, precision,
etc.) and the relevant hardware

Minimalist and Extensible

e Every document has a unique ID and a timestamp.

 Specific domains, facilities, collaborations, research
groups can overlay schemas implementing their
own standards (e.g. SciData, PIF).

Example 1: Simplest Possible Run

é Do nothing - this is the simplest possible experiment! é

Example 3: Asynchronously Monitor During a Scan

Read motor position

Example 2: A Simple Scan andiogenanc Trigger
read detector(s) and read

Read motor position
and trigger and Trigger
read detector(s) and read b Monitor beam Record
current new value

Monitor Record
temperature new value

Bluesky emits documents, streamed or in batches

e Bluesky is responsible for organizing metadata and
readings from hardware into valid documents.

e Sometimes the readings come one at a time and
Events are emitted steadily during an experiment.

e In special applications (commonly, fly scans) the
readings come from the hardware in bulk and
Events are emitted in batch(es).

 For high performance fly scanning, coordination is
needed "below" Bluesky in hardware.
e Bluesky simply provide a way to:
= Configure
» Start ("Kickoff")
= Incrementally collect data ("Collect")
= |nitiate or await completion ("Complete")

FLY SCANS

This is an area of very active development is Bluesky.

e The status quo in Bluesky is very coarse. _
 Highly flexible (good place to start...) Coordinated efforts underway at:

e But each fly scan application is built from scratch

e Diamond Light Source
(leads to duplicated efforts)

e Australian Synchrotron
e NSLSOII

e Diamond has invested a decade of research into fly-
scanning in previous Python projects.

e Prototype from Diamond applying this expertise in a
Bluesky-compatible way: Bluesky

e Work in progress to integrate this with Bluesky itself:
bluesky PR#1502

Feedback Paths

prompt / real-time analysis to steer experiment
"human-in-the-loop"

"computer-in-the-loop"

data quality checks

ADAPTIVE EXPERIMENTS

Scales of Adaptive-ness

1. below bluesky & ophyd

2. inbluesky plans, but without generating event
3. providing feedback on a per-event basis

4, providing feedback on a per-run / start basis

5. providing feedback across many runs

6. asynchronous and decoupled feedback

below bluesky & ophyd

timescale: » 10Hz

very limited time budget for analysis

very limited access to data

tightly coupled to hardware (PID loop, FGPA)
expensive to develop

providing feedback on a per-event basis

e timescale: 1-5s

e modest time budget for analysis

* access to "single point" of data (& cache)
e runin or out of acquisition process

in bluesky plans, but without generating event

e timescale: 1-10Hz
limited time budget for analysis
limited access to data
logic implemented in Python in acquisition process
coupled to hardware
can be used for filtering

providing feedback on a per-run / start basis

e timescale: 5-60s

e modest time budget for analysis

e access to "full scan" data (& cache)
e runin or out of acquisition process

B e asynchronous and decoupled feedback

e |sthe beam up?
Is the shutter open?
Is the sample still in the beam?
Do we have enough data on this sample?
Is the sample toast?

e timescale: o
e arbitarily compute budget
e access to all historical data
e muliti-modal

Docs with theory and examples: "QUEUE SERVER": AN EDITABLE
bluesky/bluesky-adaptive CONTROL QUEUE

Bluesky's first target was users coming from SPEC

Bluesky Queue Server

Support remote and multi-tenant data acquisition
Documentation: bluesky-queueserver

Has been used for user experiments

Still under rapid development

New Capability: Editable Control Queue

e Provides an editable queue of Bluesky plans to run

 All the same Bluesky plans (experiment procedures)
work

e All the same Ophyd devices work

e Can be easily populated from a user's Excel
spreadsheet

e You can safely mutate—rearrange and edit items—
during acquisition

e Well suited to graphical interfaces

Separation between user app and queue server

If app is closed or crashes, acquisition continues.
Just restart app to reconnect.

The app can provide access controls

» Guiderails (avoid too many options)

= Security

App can run on different machine from queue

Many client programs can be used simultaneously to
monitor or control the queue (web, desktop GUI,
commandline)

SURVEY OF COMMUNITY Ul

Various institutions are building graphical user

DEVELOPMENTS interfaces on Bluesky.

pyStxm at Canadian Light Source (Russ Berg)

e Desktop-based (Qt)

e Formerly had custom scanning engine
e Refactored to use Bluesky

e RussBerg/pyStxm3

" g

EIEIN]

GUI for SAXS at Australian Synchrotron (Stephen
Mudie)

o Web-based (React)

e Code partially available at
AustralianSynchrotron/saxs_beamline_library_react

e Plans to be fully openin a week or so

<

(S I - SR RNC)

SAOSY MeshSFce

C © loainost

SAXS

Status Unavallablo

Status Unavailable

Mono Shutter: cLose | oPEN

YT p—

Loop 0 Loop 1

No.pons | Doty o) No.points
2 0 2

Positons
SompleTablex +

Linear ~

Absolute ~

san
0
e
10

Positions

Loop 2

=0 No.roins
]

Positions

e \k
o

+

Help

Fastlest

Controls
Parameter Value
Parameters
s | Wi 0
Axis 1 Max 0

Plans

Run Engine

Parameter Value

Start

Events.

GUI for COSMIC at Advanced Light Source (Xi-CAM
Team)

e Desktop-based
e Plugin to the Xi-CAM framework (Qt)
e Xi-CAM/Xi-cam.Acquire

File Help

Controls Plans Run Engine

‘etc/xdg)
pinhole.

FPS: 30.05

Reset Axes
Reset LUT
v/ Passive Mode
Configuration Acquire Camera State Delay Gen State
Acquire Time 1.000
Initialized Initalized
Acquire Period 1.100

Acquire
Number of Images Initialize Initialize

Number of Exposures Shutdown Reset

BLUESKY WIDGETS

Finally, various one-off solutions developed by
beamline and/or Controls staff at NSLS-

"X-Live" (NSLS-II ISS & QAS)

"xpdacq" (NSLS-11 XPD & PDF)

"XFP High-Throughput Multi-Sample Holder" (NSLS-
Il XFP)

"BS-Studio" (NSLS-1I ESM)

We intend to guide a systematic refactor of these onto
components from bluesky-queueserver and bluesky-
widgets.

A new project aimed at sharing GUl components built
on Bluesky interfaces

bluesky/bluesky-widgets

Goals

A component library, not an extensible application
Ships runnable examples, but instruments should
build their own

Integrate with existing applications (napari, PyFAl, Examples of '”tegr?t'”g Data Broker search into
Xi-CAM, ... existing software...

All actions can be performed from a terminal or run
headless

Model is framework-agnostic. Front-ends will
include Qt, Jupyter.

IPython: bnl/databroker

() v ~/Repos/bnl/databroker [| 1

17:27 $ ipython --gui=qt

Python 3.8.5 (default, Sep 4 2020, 07:30:14)

Type 'copyright', 'credits' or 'license' for more information
IPython 7.18.1 -- An enhanced Interactive Python. Type '?' for he

s = Searches()

s.active.input.since
datetime.timedelta(days=-1)
datetime

active.input.since = datetime(

Search Data Broker from napari (N-dimensional image
Model can be manipulated from IPython terminal viewer)

Data Broker

I8 Experiment settings
(@ mask

@® Peak picking

A\ Geometry fitting

[B cake & integration

File Help

Local | Databroker | <

until

Unique ID Transient Scan ID_Plan Name.

bc35550f 47584

PyFAl Calibration

until:

860ccl74 1

7blbaf7e 2

[EEE 0717 12116 -

2021-07-16 12:16 ~

Help
Define parameters of your experiment.

Calibrant, wavelength, detector, and an image
are expected.

Experiment settings
Energy:
elength:

ibrant:

ne: No detector

& (hxw):

Unique ID Transient Scan ID Plan § 3 size (hxw):

count

sition

count

2019-07-17 12:09

2021-07-16 12:09

Duration Exit Status

1 success

Ronald . Pandolfi*
Allan®

Luis Barroso-Luque®
Stuart I. Campbell*
Thomas A. Caswell®
Austin Blai
Francesco De Carlo®
Sean Fackler®
Amanda P. Fournier®
Guillaume Freychet*

Harinarayan Krishnan®
Dinesh Kumar*

R. Joseph Kine?
Ruipeng Li*
Christopher Liman?

ge file:
No image

file:

\Annned Math

Welcome to Xi-cam

Please cite Xi-cam in published work:

Stefano Marchesini*
Apurva Mehta®
Alpha T. N'Diaye®

Dilworth (Dula) Y. Parkinson’
Holden Parks®

Lenson A. Pellouchoud®
Talita Perciano®

Fan

Shreya Sahoo®

Joseph Strzalka®

Daniel Sunday®

Christopher |. Tassone®
Daniela Ushizima®
Singanallur Venkatakrishnan
Kevin G. Yager'

James A. Sethian®
Alexander Hexemer®

“Lawrence Berkeley National Laboratory

SStanford Synchrotron Radiation Lightsource
“Advanced Photon Source, Argonne National Laboratory
“0ak Ridge National Laboraton

“National Synchrotron Light Source I

Center for Functional Nanomaterials

SNational Institute of Standards and Technology.
"Department of Electrical Engineerint

and Computer Science, Northwestern University

Search Data Broker from PyFAI (powder diffraction
software)

Search Data Broker from Xi-CAM

PAYOFF:
EASY AND ROBUST INTEGRATION WITH
EXISTING SOFTWARE

LCLS's Skywalker project builds on this to
automatically deliver the photon beam to a number of
experimental hutches at LCLS.

Proof of concept:
In this scan, each step is determined adaptively in
response to local slope.

The system is designed to make fast feedback easy to write.

A stream of images from a linear detector is
reconstructed into a volume using tomopy (APS).

It took one TomoPy developer and one Bluesky developer less than 20 minutes to write this.

The Xi-cam 2 GUI / plugin framework from CAMERA
has adopted Bluesky's Event Model
for its internal data structures.

A Gaussian is fit to a stream of measured data using
the Python library Imfit (from U. Chicago / APS).

Batch | HpGISAXS | Log | Tmelne | Tomography | Viewer | 30Viewer | HpRMC | IPython

sEreETAl -1 | =CN®
49f8e384-alab-daee-964a-adc553afe986 I value £

Paramet;

Real-time Data Analysis at APS
LINKS

Home Page and Documentation:
blueskyproject.io

Code and Arguments about Code:
github.com/bluesky

Live, Public Demo Deployment (using Jupyter):
try.nsls2.bnl.gov

These Slides:

blueskyproject.io/bluesky-slides

Data is streamed from APS to Argonne Leadership Compute Facility. Results are immediately visualized at APS.

