

Atomistic modeling and machine learning for neutron scattering data analysis

Yongqiang (YQ) Cheng

Spectroscopy Section Neutron Scattering Division Oak Ridge National Laboratory

ORNL is managed by UT-Battelle, LLC for the US Department of Energy

Atomistic modeling in neutron scattering

• Essential role in neutron data analysis and interpretation

Bridging theory and INS experiments

VISION, CNCS, HYSPEC, SEQUOIA, ARCS and many other neutron spectrometers.

Two grand challenges

- The model is not good enough for the science
 - Time and/or length scale limitations
 - Accuracy and efficiency trade-off
- The analysis is not easy enough for the users
 - Computing resources
 - Learning curve

How many people can use it

How to predict neutron scattering features from an atomistic model?

What dictates the (nonmagnetic) features we see in a neutron scattering experiment (ideally)?

Given a structure, how to obtain the energies and forces (easily/quickly and accurately)?

Development and application of MLFFs in neutron scattering

Task:	DFT calculations to generate training datasets	Training of MLFFs	Atomistic modeling with MLFFs	Neutron scattering simulation	Analysis, visualization, and interpretation
Software:	VASP/CP2K/etc.	DeePMD etc.	LAMMPS etc.	OCLIMAX	Mantid/Dave/etc.
Hardware:	CADES/HPC	DGX	CADES/HPC/DGX Analysis/PC	Analysis/PC	Analysis/PC

DeepMD: Zhang et al. Phys. Rev. Lett. 120, 143001 (2018) NequIP: Batzner et al. <u>https://arxiv.org/abs/2101.03164</u> (2021)

Simulation of vibration and INS

✓ Simulation of diffusion and QENS in heterogeneous systems

> DFT: 1,000 steps per day on CADES

MLFF: 10,000 steps per minute on DGX

<u>10,000 speedup</u> and <u>linear</u> <u>scaling</u> with size, while inheriting <u>spectroscopic</u> <u>accuracy</u> from DFT

 \checkmark

Opportunities

- Disordered/high-entropy materials
- Defects, surface, interface, domain boundaries
- Diffuse scattering (structural and thermal)

To tackle challenge 2: Neural networks connecting structure and neutron scattering data

Representation of structure

• Euclidean neural network (e3nn)

<u>https://e3nn.org/</u> https://github.com/zhantaochen/phononDoS_tutorial Equivariant neural network for 3D translation, rotation, inversion

CAK RIDGE HIGH FLUX SPALLATION National Laboratory REACTOR SOURCE

10

In collaboration with Mingda Li and Tess Smidt at MIT Chen et al. Chem. Phys. Rev. **2**, 031301 (2021) Chen et al. Adv. Sci. **8**, 2004214 (2021)

From structure to spectra (Inorganic crystals)

- Materials Project Phonon Database (~10,000 inorganic crystals, 90% training, 5% validation, 5% testing) [http://phonondb.mtl.kyoto-u.ac.jp/]
- Euclidean Neural Network (e3nn) [https://e3nn.org/]

CAK RIDGE

11

National Laboratory REACTOR

SPALLATION

 Simulated INS spectra were generated using VASP/Phonopy and OCLIMAX (10~1000cm⁻¹, 100 data points)

A critical link in the digital twin workflow

Opportunities

- Access by users either through a web interface or Analysis
- Experiment planning
- Rapid/automated data analysis and interpretation

Thank you!

