

Exploring Initial Distributions at the Beam Test Facility

Kiersten Ruisard

5th ICFA mini-workshop on Space Charge Oct 25, 2022

ORNL is managed by UT-Battelle LLC for the US Department of Energy

Background and Motivation

Broad goals:

- predictive modeling for beam distribution with halo
- better understanding of beam losses

Beam Test Facility (BTF)

After RFQ, beam core is hollowed

In simulation of MEBT, we predict that neglecting correlations will affect rms sizes and beam shoulders/tails

PyORBIT simulation of SNS linac (MEBT+DTL) with/without interplane correlation:

Initial simulation bunch from Parmteq simulation:

Fully correlated, Not fully correlated

For BTF experiment, we expect effect at 3 orders of magnitude below core density

Right now, lattice errors far exceed sensitivity needed to examine effect of 6D

High chromaticity in BTF causes sensitivity to RFQ output energy

Per FODO cell, $\Delta v_{cell} = -0.07 \left[\frac{1}{MeV}\right] \delta E$ For 50 keV RMS width and 9.5 cell FODO, $\Delta v = -12.5^{\circ}$

Current benchmark status: there is no RMS agreement

CAK RIDGE

Soft-edged field profiles matters for permanent magnets in FODO section

We still (mostly) trust hard-edged model for electro-magnet quads! Are we wrong?

Py-orbit multi-bunch solver is required to get space charge right,

Residual vertical dispersion explains asymmetry in vertical phase space

Summary #1

- Motivation: predicting halo extent
- Initial bunch: core-hollowed due to nonlinear space charge
- Status: Lattice model errors exceed distribution errors

- Ranked importance:
 - Field profile for PM quads
 - Overlapping bunches
 - Dipole model?
 - Residual dispersion
 - Energy, via chromaticity
 - Field profile for electromagnet quads
 - 6D initial distribution

Summary slide, 5th ICFA mini-workshop on Space Charge Theme: Bridging the gap in space charge dynamics

Summary:

This talk presented a study of the initial distribution and transport of (up to) 50 mA, 402.5 MHz H⁻ bunches at the SNS Beam Test Facility. The purpose of this work is to demonstrate prediction of beam halo + halo losses

From your perspective, where is the gap regarding space charge effects? The gap is in our ability to predict beam evolution with space charge with desired accuracy

What is needed to bridge this gap?

(1) Careful validation of models, including initial beam distribution

- Sufficient diagnostics
- efficient methods for calibration and error identification
- (2) Responsive simulation development (e.g., multi-bunch solver)
- (3) Other effects for linacs: Cavity models, longitudinal dynamics

Backup

Project Status

- Shutdown August 2022
- New RFQ commissioning
 ~Nov 2022
- Straight BTF in 2023

Species	H-
Energy (MEBT)	2.5 MeV
Energy (LEBT)	65 keV
RFQ	449 cells 402.5 MHz
Beam current	Up to 50 mA

Energy error (chromatic effect)

Orange is 2.5 MeV-20 keV Blue is 2.5 MeV

5D method

6D apparatus

grid 9x 9 x 9 x 9 x 9 x 512, ~24 hours

Beam current during 7.6-hour scan

Comparison of 2 datasets taken 2 weeks apart

5D scan (integrated along other3 dimensions)7.6 hours

2D scan ~15 minutes

BTF follows footsteps of earlier attempts to benchmark medium-energy beam evolution

Qiang, J., Colestock, P. L., Gilpatrick, D., Smith, H. V., Wangler, T. P., & Schulze, M. E. (2002). Macroparticle simulation studies of a proton beam halo experiment. *Phys Rev ST-AB*, 5(12), 35–47.

Simulations of high-intensity ion front-ends benchmarked to RMS agreement but cannot reproduce tails/halo.

Hypothesis: Limited knowledge of initial distribution to blame for discrepancies

Typical input distribution based on 2D projections

CAK RIDGE

23

Open slide master to edit

Right now, lattice errors far exceed sensitivity needed to examine effect of 6D

High-dimensional benchmark at end of beamline

25

2D projected phase space viewed at energy slices

Measurement

Simulation

2D projected phase space viewed at energy slices

Measurement

Simulation

Chromaticity in FODO line

Per FODO cell, C = -0.00007 / keV

For 50 keV RMS width and 9.5 cell FODO, $\Delta \nu = -12.5^{\circ}$

8 mm ~ **??** keV

RFQ Benchmark, full-projection

RFQ Benchmark, slices

simulated

