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The threshold was reproduced, with different numerical factors, by several authors,
including myself.
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Particle Interaction  

AB5

Beam particles interact with each other, driving collective instabilities. 

This interaction is described by means of wake functions

and impedances

𝐹|| = 𝑒"𝑊#
$(𝑠)



Space Charge or Inductance  
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SC is repulsive below transition, and attractive above it. The vacuum chamber
inductance is described by similar formulas, but with opposite sign.

We’ll focus on the repulsive case here (SC below transition or the inductance
above)



Potential Well Distortion  
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Steady state problem:



The Jeans-Vlasov Equation (JVE)
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Van Kampen approach: eigensystem of JVE  
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If the wake is small enough, the weak headtail approximation, 𝑚 = 𝑛 , is
justified.

In this case, the operator 𝑉 is Hermitian. Thus, with 𝐹! < 0, the frequencies



Continuous and discrete spectra  
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Is the beam stable, if the frequencies are all real? Not necessarily.
Generally, the spectrum consists of two parts, continuous and discrete (van Kampen)

The continuous spectrum coincides with the incoherent one; its modes are
singular functions, mostly located near the corresponding action. Their phase
mixing corresponds to Landau damping.

The discrete modes lie outside the incoherent spectrum, they are described by
non-singular analytical functions. If there is at least one discrete mode, Landau
damping is lost.



Loss of Landau damping (LLD)  
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Landau damping is a natural immune system of beams against instabilities.

Without it, even a tiny virus coupled-bunch (CB) wake drives an instability.

Thus, Discrete Mode = LLD = CB Instability (saturated by nonlinearity).

Undamped coherent oscillations observed at Tevatron, RHIC, SPS
and LHC can be attributed to the LLD.



P  
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𝐹 𝐼 ∝ 1 − "
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For , 𝑘%& ≈

𝜋 /𝑏'

32 𝜇 𝜇 + 1 𝑞()*
↔ Δ𝑏 𝑞()* ≃ 1

That threshold set by the impedance roll-off , suggests the mode size𝑞()*

Δ𝑏 ≃
32𝑘 𝜇 𝜇 + 1

𝜋8𝑏'
= 2𝑘

𝐹!

Ω! ≡ 𝛼



Preliminary estimations

AB13

Let a central part of a bunch of a size 𝑎 oscillate with a small amplitude .

It yields the phase space density perturbation

The line density perturbation

And the reaction force

Corresponding to the coherent tune shift

It can be compared with the incoherent tune spread

If , or , Landau damping is lost.

For the collective oscillations with there is no Landau damping.

𝑧̃

𝑓 ≃ 𝐹!𝑎 𝑧̃

𝜌 ≃ 𝑓 𝑎 ≃ 𝐹!𝑎+ 𝑧̃

𝐸 ≃ ⁄𝑘𝜌 𝑎 ≃ 𝑘 𝐹!𝑎 𝑧̃

Δ𝜔 ≃ −𝑘 𝐹!𝑎/2 > 0

±𝛿Ω = ±|Ω!|𝑎+/4

Δ𝜔 ≥ 𝛿Ω 𝑎 ≤ 2 𝑘 | ⁄𝐹! Ω!| ≡ 𝛼

𝑎 ≤ 𝛼



Four SC regimes
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𝛼 ≤ 1/𝑞()* Insignificant SC. Landau damping is there (or IBS).

⁄1 𝑞()* ≤ 𝛼 ≤ 𝜎 ↔ 𝑘%&≤ 𝑘 ≤ 0.2 𝜎, Weak SC. Landau damping is lost.

0.2 𝜎, < 𝑘 ≪ 2 2𝜋 𝜎- Medium SC. The relative tune depression is small

𝑘 ≃ 2 2𝜋 𝜎- Strong SC. The bucket is flattened, and the bunch profile is parabolic.



Weak SC,  JVE reduction (1)
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Weak SC,   JVE reduction (2)
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the coherent tune shift is with respect to what

scaling!

𝛼 =
32𝑘 𝜇 𝜇 + 1

𝜋8𝑏'
For 𝐹 𝐼 ∝ 1 − "

#"

$
;

𝛼 =
8 𝑘
𝜋 𝜎'

For 𝐹 𝐼 ∝ exp −𝐼/𝜎+ .



Weak SC,   JVE reduction (3)
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discrete spectrum:𝜈 > 0

note two singularities here

Big deal: the eigen-problem is reduced to a parameter-less equation!

Should we call that sort of solutions analytical?



Discrete Spectrum 
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Eigenfunctions
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Eigenfunctions
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Comparison with the KAS article
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Coupled-bunch (CB) growth rates
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with the CB term only, it reduces to the Sacherer dispersion relation,

If the CB tune shift is small compared with SB, then



Higher multipoles
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Kernels
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SB Quadrupole Eigenvalues  
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Quadrupole Eigenfunctions
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At small arguments,Φ(. 𝑟 ∝ 𝑟(



Quadrupole mode line density  
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CB growth rates for arbitrary multipolarity m
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If the CB term is smaller than the SB, then the perturbation theory results in

For the dipole modes,

If the CB term dominates over the SB one, Sacherer-type dispersion relation follows:

∝ 𝑁"%&'



What is new here?
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1. Zero LLD threshold for repulsive inductance is explained on fingers.

2. Four SC regimes are suggested to distinguish.

3. For weak SC, the eigen-problem is reduced to a parameter-less equation.

4. Single-bunch spectra are found for arbitrary multipoles.

5. Coupled-bunch growth rates are presented analytically.

6. LLD+CB should result in persistent oscillations, where CB growth is

saturated by nonlinearity, unless it is IBS–damped.



In 1-2 sentences, summarize the content of this presentation

Theory of longitudinal modes with weak SC is developed for SB and CB cases.

From your perspective, where is the gap regarding space charge effects?

Convective instabilities with chromaticity, damper and LD.

What is needed to bridge this gap?

Sufficient number of adequate people working on that.

Summary slide, 5th ICFA mini-workshop on Space Charge
Theme: Bridging the gap in space charge dynamics
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Many thanks!  


