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The Landau damping mechanism plays a crucial role in providing single-bunch stability in the LHC,
high-luminosity LHC, and other existing as well as previous and future circular hadron accelerators. In this
paper, the thresholds for the loss of Landau damping (LLD) in the longitudinal plane are derived
analytically using the Lebedev matrix equation (1968) and the concept of the emerged van Kampen modes
(1983). We have found that for the commonly used particle distribution functions from a binomial family,
the LLD threshold vanishes in the presence of the constant inductive impedance ImZ/k above transition
energy. Thus, the effect of the cutoff frequency or the resonant frequency of a broadband impedance on
beam dynamics is studied in detail. The findings are confirmed by direct numerical solutions of the
Lebedev equation as well as using the Oide-Yokoya method (1990). Moreover, the characteristics, which
are important for beam operation, as the amplitude of residual oscillations and the damping time after a kick
(or injection errors) are considered both above and below the threshold. Dependence of the threshold on
particle distribution in the longitudinal phase space is also analyzed, including some special cases with a
nonzero threshold for ImZ/k = const. All main results are confirmed by macroparticle simulations and
consistent with available beam measurements in the LHC.
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Longitudinal collective modes of a bunched beam with a repulsive inductive impedance (the space
charge below transition or the chamber inductance above it) are analytically described by means of
reduction of the linearized Vlasov equation to a parameterless integral equation. For any multipolarity, the
discrete part of the spectrum is found to consist of infinite number of modes with real tunes, which limit
point is the incoherent zero-amplitude frequency. In other words, notwithstanding the rf bucket nonlinearity
and potential well distortion, the Landau damping is lost. Hence, even a tiny coupled-bunch interaction
makes the beam unstable; such growth rates for all the modes are analytically obtained for arbitrary
multipolarity. In practice, however, the finite threshold of this loss of Landau damping is set either by the
high-frequency impedance roll-off or intrabeam scattering. Above the threshold, growth of the leading
collective mode should result in persistent nonlinear oscillations.




Beam particles interact with each other, driving collective instabilities.

This interaction is described by means of wake functions

F” — 82 WO’(S)

and impedances




Space Charge or Inductance

W(s) < 6(s)

SC is repulsive below transition, and attractive above it. The vacuum chamber
inductance is described by similar formulas, but with opposite sign.

We’ll focus on the repulsive case here (SC below transition or the inductance

above)
A2



Potential Well Distortion

Steady state problem:




The Jeans-Vlasov Equation (JVE)
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Van Kampen approach: eigensystem of JVE
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If the wake is small enough, the weak headtail approximation, m = n, is
justified.



Continuous and discrete spectra

[s the beam stable, if the frequencies are all real? Not necessarily.
Generally, the spectrum consists of two parts, continuous and discrete (van Kampen)
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The continuous spectrum coincides with the incoherent one; its modes are
singular functions, mostly located near the corresponding action. Their phase
mixing corresponds to Landau damping.

The discrete modes lie outside the incoherent spectrum, they are described by
non-singular analytical functions. If there is at least one discrete mode, Landau
damping is lost.



Loss of Landau damping (LLD)

Landau damping i t instabilities.

Thus, Disc
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Preliminary estimations

Let a central part of a bunch of a size a oscillate with a small amplitude 7.
It yields the phase space density perturbation f ~ F'q Z

The line density perturbation p = fa = F'a® Z

And the reaction force E = kp/a =k F'a Z

Corresponding to the coherent tune shift Aw = —k F'a/2 >0

It can be compared with the incoherent tune spread +8Q = +|Q’|a?/4

If Aw =60, 0or a<2k|F'/Q'| = a, Landau damping is lost.

For the collective oscillations with @ < @ there is no Landau damping.
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discrete spectrum:v > 0

2 2 . .
SR 1 ote two singularities here

Pmin = mMin(r, '), rpax = max(r,r’)

Big deal: the eigen-problem is reduced to a parameter-less equation!

/ Dg(r)P.(r)rdr= 0py; 8;F =123,
0

Should we call that sort of solutions analytical?



Discrete Spectrum

Eigenvalues
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FIG. 1. Eigenvalues v computed for three numbers of mesh
points N,, with the wake size o¢,, ~ 0.005 in the scaled units. The
largest eigenvalues are v = 0.44, 0.16, 0.08. With denser mesh,
the high-frequency tail of the spectrum changes, while its low-
frequency part remains the same.




Eigenfunctions

Eigenfunctions
10}

FIG. 3. Eigenfunctions ®4(r), for =1, 2, 3. The leading
mode is blue, the next is yellow, and the third one is green. The
eigenvalue of the leading mode is v = 0.43.




Eigenfunctions

FIG. 4. Line density perturbations, Eq. (25), associated with the
first three modes.




Comparison with the KAS article
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FIG. 6. Fourier transforms of the leading dipole mode line
density. The general frame with its solid lines is a copy of
Fig. 11, right, of Ref. [8] for the specified LHC beam
parameters. The dashed red line shows the Fourier transform
of the parameter-less leading mode profile, Fig. 4, scaled to the
solid red line parameters. The blue dashed line shows the
transform of the line density perturbation for the solid green and
blue line parameters, if it corresponded to the rigid-bunch
motion. The blue dotted line, practically coinciding with almost
identical green and blue solid lines, is a fit of a Gaussian rigid-
bunch mode.
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with the CB term only, it reduces to the Sacherer dispersion relation,

[f the CB tune shift is small compared with SB, then
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Higher multipoles
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SB Quadrupole Eigenvalues

Eigenvalues

FIG. 8. Eigenvalues for the quadrupole modes. For the leading mode, v = 0.16.



Quadrupole Eigenfunctions

Eigenfunctions
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FIG. 9. Eigenfunctions for the 1st, 2nd and 3rd discrete quadrupole modes

At small arguments, @, 5 (1) &< r™




Quadrupole mode line density

p(z) = / dpf(I) cos(2me) = 2 / * 20

1 —22°%/r?

Line density perturbations




CB growth rates for arbitrary multipolarity m

If the CB term is smaller than the SB, then the perturbation theory results in

For the dipole modes,

~ Nron c

I' =
2’)/00 QO

Z W"(—nsw) exp (ini,)
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the CB term dominates over the SB one, Sacherer-type dispersion relation follows




What is new here?

. Zero LLD threshold for repulsive inductance is explained on fingers.

. Four SC regimes are suggested to distinguish.

. For weak SC, the eigen-problem is reduced to a parameter-less equation.

. Single-bunch spectra are found for arbitrary multipoles.

. Coupled-bunch growth rates are presented analytically.

. LLD+CB should result in persistent oscillations, where CB growth is

saturated by nonlinearity, unless it is IBS—damped.
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In 1-2 sentences, summarize the content of this presentation

Theory of longitudinal modes with weak SC is developed for SB and CB cases.
From your perspective, where is the gap regarding space charge effects?
Convective instabilities with chromaticity, damper and LD.

What is needed to bridge this gap?

Sufficient number of adequate people working on that.







