

Adrian Oeftiger

Space Charge Workshop ORNL, USA 24 October 2022

Motivation

Facility for Antiproton and Ion ResearchSIS100: deliver high-intensity beams

Figure: FAIR complex

FAIR GmbH | GSI GmbH

Adrian Oeftiger

Motivation

Facility for Antiproton and Ion Research

- SIS100: deliver high-intensity beams
- crucial for performance: maintain beam quality during 1-sec injection plateau

uranium U²⁸⁺ beam most critical:

largest beam size vs. transverse aperture

- space-charge induced losses
 - $\rightsquigarrow \ \ dynamic \ vacuum \ issues$
 - ⇒ low-loss operation < 5%!</p>
- key question: what is the space-charge limit?

Figure: scaled beam sizes at 18 Tm

Adrian Oeftiger

Contents

Key ingredients of study:

- 1. detailed model for magnetic field errors from cold bench measurements
- 2. full tracking model of machine lattice
- 3. detailed space charge models
 - self-consistent 3D PIC solver (particle-in-cell)
 - fast (approximative) frozen field maps
 - ⇒ parallelised on multi-core CPU and GPU architectures

Contents

Structure:

- A. The Model
- B. Betatron Resonances:
 - Intrinsic from Space Charge
 - External from Field Errors
- C. Space-Charge Limit
- D. Mitigation Measures

A. The Model

Space Charge Modelling

Simulation model:

track macro-particles (m.p.) through accelerator lattice & space charge kicks

nonlinear 3D space charge (SC) models:

- self-consistent PIC: particle-in-cell for open-boundary Poisson equation
- *fixed frozen (FFSC):* constant field map independent of m.p. dynamics
- (adaptive frozen (AFSC): field map scaled with m.p. distribution momenta)

Figure: sketch of simulation model

Figure: horizontal space charge field

Space Charge Modelling

Simulation model:

track macro-particles (m.p.) through accelerator lattice & space charge kicks

- nonlinear 3D space charge (SC) models:
 - self-consistent PIC: particle-in-cell for open-boundary Poisson equation
 - *fixed frozen (FESC)* constant field man independent of m.p. dynamics

Maximum SC Tune Shift

$$\Delta Q_{y}^{\rm SC} = -\frac{Ze}{4\pi\epsilon_{0}m_{0}c^{2}} \frac{\lambda_{\rm max}}{\beta^{2}\gamma^{3}} \frac{1}{2\pi} \oint ds \frac{\beta_{y}(s)}{\sigma_{y}(s)(\sigma_{x}(s) + \sigma_{y}(s))}$$

Figure: sketch of simulation model

Figure: horizontal space charge field

Adrian Oeftiger

Beam Parameters

Figure: space charge tune footprint

Table: Considered Parameters for $^{238}\mathrm{U}^{28+}$ Accumulation at SIS100 Injection Energy

Parameter	Value
Hor. norm. rms emittance ϵ_{x}	5.9 mm mrad
Vert. norm. rms emittance ϵ_y	2.5 mm mrad
Rms bunch length σ_z	13.2 m
Bunch intensity N_0 of U ²⁸⁺ ions	0.625×10^{11}
Max. space charge $\Delta Q_{\gamma}^{ m SC}$	-0.30
Rms chromatic $Q'_{x,y} \cdot \sigma_{\Delta p/p_0}$	0.01
Synchrotron tune Q_s	4.5×10^{-3}
Kinetic energy	$E_{ m kin}$ = 200 MeV/u
Relativistic β factor	0.568
Revolution frequency f_{rev}	157 kHz

B. Betatron Resonances

Only Space Charge

Figure: tune diagram of beam loss

Cold, error-free, symmetric SIS100 lattice:

- perfect dipole and quadrupole magnets
- symmetry of S = 6 maintained
 - (no warm / normalconducting quadrupoles)
- space charge \rightarrow only source for resonances
- simulated for 160'000 turns = 1 second
- ⇒ mainly Montague resonance visible
- ⇒ absence of low-order structure resonances!

Only Space Charge

Figure: tune diagram of beam loss

Cold, error-free, symmetric SIS100 lattice:

- perfect dipole and quadrupole magnets
- symmetry of S = 6 maintained
 - (no warm / normalconducting quadrupoles)
- space charge \rightarrow only source for resonances
- simulated for 160'000 turns = 1 second
- ⇒ mainly Montague resonance visible
- ⇒ absence of low-order structure resonances!

Montague Resonance

Montague resonance $2Q_x - 2Q_y = 0$:

- 4th-order resonance
- intrinsically driven by space charge
- transverse emittance exchange for anisotropic beams
- ⇒ stopband always present around $Q_x \approx Q_y$ for SIS100 beams
- Space charge model predictions:
 - bad: "adaptive frozen" resolves full exchange but predicts too large stopband extent
- + good: "fixed frozen" resolves stopband edges well!

Figure: emittance exchange

Montague Resonance

Warm Quadrupoles

Figure: SIS100 quadrupole survey

Figure: corrected warm quadrupoles

Real SIS100 lattice:

- 2 cold quadrupoles replaced by warm / normalconducting quadrupoles (radiation hardened, required in extraction region)
- breaking of S = 6 symmetry
- ⇒ gradient error
- \Rightarrow externally driven half-integer resonance
- \Rightarrow can be minimised by quadrupole correctors

Figure: β-beat around SIS100 [courtesy D. Ondreka]

FAIR GmbH | GSI GmbH

Adrian Oeftiger

Half-integer stopband:

- without space charge, without $\Delta p/p_0$: $\delta Q_{\text{stopband}} = 0.023$
- without space charge, with $\Delta p/p_0$: $\delta Q_{\text{stopband}} \sim 0.1$
- with space charge: $\delta Q_{\text{stopband}} \sim 0.25$
- \Rightarrow fixed frozen SC model reproduces stopband edges from PIC

FAIR GmbH | GSI GmbH

Adrian Oeftiger

Field Error Model

Figure: dipole magnets

Figure: quadrupole magnets

Field error model extracted from cold bench measurements of magnet units:

- stochastic amplitudes drive non-systematic resonances
- random number sequence → multipole errors for every dipole and quadrupole magnet

quadrupole model displayed here corresponds to PRAB paper version (based on stamped FoS), see GSI-2021-00450 report / for model based on series production and its comparison

FAIR GmbH | GSI GmbH

Adrian Oeftiger

Full Model with Space Charge

Linear and nonlinear resonances driven by magnet field errors. Resonance condition without space charge:

Figure: no space charge

Figure: with fixed frozen space charge

- → SC broadens existing resonance stopbands
- \Rightarrow optimal working point area around $(Q_x, Q_y) = (18.95, 18.87)$ [requires transverse feedback system to fight resistive wall instability!]

FAIR GmbH | GSI GmbH

Adrian Oeftiger

Validation with Self-consistent PIC

Self-consistent PIC simulations:

- ✓ validated Montague resonance
- ✓ validated half-integer resonance
- \rightarrow now validate full error model FFSC predictions for beam loss

note: PIC simulations take 2 days (on NVIDIA V100 GPU) vs. FFSC simulations with 7 min (on 16 CPU cores, HPC AMD)

		AL: 0.0:	04.0 + 1 0000	11/0	~
FAIR GmbH	GSI GMDH	Adrian Oeffiger	24 October 2022	11/4	2ι

Relevant Field Error Orders

Major resonances confining low-loss area:

- top left: Montague resonance
- right: integer resonance $Q_X = 19$
- bottom: higher-order resonances

Simulations with reduced field error model:

identify sextupole and octupole orders n = 3,4 as main limitation towards low Q_y

Adrian Oeftiger

field error order: •••• all $n \leq 7$

= 2, 3

= 234

n = 2, 3, 4, 6

Figure: low-loss tune areas vs. multipole order

19.0

18.9

€ 18.8-

18.7-

C. Space-Charge Limit

dynamic definition of space-charge limit

reached when loss-free working point area vanishes

Figure: low-loss area for increasing N

Keeping all beam parameters identical, increasing N:

 \implies U²⁸⁺ space-charge limit at **120%** of nominal bunch intensity N_0 :

$$\max \left| \Delta Q_y^{\text{SC}} \right| = 0.36$$

FAIR GmbH | GSI GmbH

Adrian Oeftiger

D. Mitigation Measures

Correction of β -beat

Two sources of β -beat (gradient error):

- warm quadrupoles: uncorrected = 2%
 - \rightarrow significant effect on low-loss area size
 - \implies important to control

Figure: low-loss area with warm quadrupoles

Correction of β -beat

Two sources of β -beat (gradient error):

- warm quadrupoles: uncorrected = 2%
 - → significant effect on low-loss area size
 - ⇒ important to control
- distributed b₂: ≈ 0.5% (according to field error model)

 \implies below $b_2 = 10$ units: no significant effect on low-loss area size

Figure: low-loss area with b_2

Figure: size of low-loss area vs. b2

Double-harmonic RF

By adding h = 20 harmonic at half base RF voltage in bunch lengthening mode,

$$V_{h=20} = V_{h=10}/2$$

obtain flattened bunches with reduced line charge density at 80% of nominal $\lambda_{\rm max}.$

Figure: line densities

Figure: single-harmonic RF

Figure: double-harmonic RF

Observations:

- black half-integer stopband shrinks by $\approx 20\%$
- low-loss area opens up

FAIR GmbH | GSI GmbH

Adrian Oeftiger

SC Limit with Double-harmonic RF

Increasing N for double-harmonic RF:

• find space-charge limit at 150% of nominal intensity N_0

Figure: low-loss area for increasing *N*

Adrian Oeftiger

FAIR GmbH | GSI GmbH

Pulsed Electron Lenses

Pulsed electron lenses:

- short insertion with co-propagating electron beam
- transversely homogeneous distribution
- longitudinally modulated to match ion bunch profile

→ compensate longitudinal dependency of space charge (ideal: half compensation of linear space charge tune shift, $\Delta Q_{\text{elens}} = \Delta Q_{\text{KV}}/2$)

- ⇒ installing 3 such electron lenses shrinks stopbands!
- \implies space-charge limit increased significantly!

Figure: tune diagram at nominal N

Figure: e-lens model for SIS18

Pulsed Electron Lenses

Pulsed electron lenses:

- short insertion with co-propagating electron beam
- transversely homogeneous distribution
- longitudinally modulated to match ion bunch profile

→ compensate longitudinal dependency of space charge (ideal: half compensation of linear space charge tune shift, $\Delta Q_{\text{elens}} = \Delta Q_{\text{KV}}/2$)

- ⇒ installing 3 such electron lenses shrinks stopbands!
- \implies space-charge limit increased significantly!

Adrian Oeftiger

Figure: low-loss area for increasing *N* [preliminary, unpublished results]

Conclusion

FAIR E = i

Summary:

- **validated** fixed frozen SC model predictions by long-term PIC simulations
- identified **optimal tune area** around $(Q_x, Q_y) = (18.95, 18.87)$
 - → rigid constraints: Montague resonance (top left), integer resonance (right)
 - → soft constraint: higher-order resonances (bottom)
- explored **space-charge limit**: max $\left| \Delta Q_{v}^{\text{SC}} \right| = 0.36$
 - nominal SIS100: +20% intensity
 - double-harmonic RF: +50% intensity
 - 3 pulsed electron lenses: +80..90% intensity

take-home message

- dynamic space-charge limit: find based on tolerable loss & emittance growth
- nominal FAIR intensity → feasibility confirmed

Next steps:

- coherent stability with space charge (resistive-wall, nonlinear electron lenses)
- quantify impact by indirect space charge

FAIR GmbH | GSI GmbH

Adrian Oeftiger

... the new GPU cluster ...

Figure: GPU simulation results for latest magnet field error model

Thanks to GSI's new high-performance GPU cluster in Green Cube:

- 400 GPU cards of today's most performant model (AMD Radeon Instinct MI100)
- even faster simulations, larger tune scans in shorter times
- ⇒ following up magnet series production and doublet assembly

Thank you for your attention!

Acknowledgements:

GSI: O. Boine-Frankenheim, V. Chetvertkova, V. Kornilov, D. Rabusov, S. Sorge, D. Ondreka, A. Bleile, V. Maroussov, C. Roux, K. Sugita

CERN: R. de Maria, G. Iadarola, M. Schwinzerl

Grand Overview Tune Diagrams

FAIR GmbH | GSI GmbH

Adrian Oeftiger

24 October 2022

21/20

Figure: with space charge, emittance growth

FAIR GmbH | GSI GmbH

Adrian Oeftiger

19.00

18.95

18.90

oे 18.85-18.80-

18.75

18.70-

PIC Results for Best Working Point

Figure: tune diagram with self-consistent PIC simulations

error seeds: [1] turns: 20000 (particle-in-cell simulations)

18.75 18.80 18.85 18.90 18.95 19.00

 Q_{x}

PIC loss-free

best working point

Figure: optimal working point $(Q_x, Q_y) = (18.97, 18.85)$

Adrian Oeftiger

Beam losses [%]

0.3

1.00-

0.00

Emittance growth [%]

10-

Comparison 2.5D to 3D PIC

ss: 2.5D PIC

····· loss: 3D PIC

- ε_x: 2.5D PIC

5000

..... ε.: 3D PIC

Figure: good working point $(Q_X, Q_Y) = (18.97, 18.85)$

10000

Turns

ε.: 2.5D PIC

15000

20000

----- ε_ν: 3D PIC

Figure: lossy working point $(Q_X, Q_Y) = (18.84, 18.73)$

Adrian Oeftiger

Adaptive Frozen SC Model

Half-integer Resonance vs. SC

Nuclear Inst. and Methods in Physics Research, A 1040 (2022) 167290

Characterization and minimization of the half-integer stop band with space charge in a hadron synchrotron

Dmitrii Rabusov^{a,*}, Adrian Oeftiger^b, Oliver Boine-Frankenheim^{a,b} ^aTerhische Universität Darmaada, Schlaugartmare. 8, 64289 Darmaada, Germany ^b GSI Helnholtzennum für Schlaugartmaren, 8, 64291 Darmaada, Germany

Figure: emittance growth in 2D tune diagram

Figure: space-charge limit for Gaussian bunches

Figure: correction independent of space charge

FAIR GmbH | GSI GmbH

Adrian Oeftiger

24 October 2022

26/20

Half-integer Resonance vs. SC

Nuclear Inst. and Methods in Physics Research, A 1040 (2022) 167290

Characterization and minimization of the half-integer stop band with space charge in a hadron synchrotron

Dmitrii Rabusov ^{a,*}, Adrian Oeftiger ^b, Oliver Boine-Frankenheim ^{a,b}

^a Technische Universität Darmutadt, Schlassgartenstr. 8, 64289 Darmutadt, Germany
^b GSI Helmholtzentrum f
ür Schwerionenforschung GmbH, Planckstr. 1, 64291 Darmutadt, Germany

Figure: coasting beam stopband edges vs. space charge

Figure: choose a threshold

FAIR GmbH | GSI GmbH

Adrian Oeftiger

24 October 2022

26/20