
 

 

Magnetic structure analysis and refinement with FULLPROF 
 

Lecture notes for the International School of Crystallography: Magnetic Crystallography 

 

Juan Rodríguez-Carvajal 
 

Institut Laue-Langevin, 71, Avenue des Martyrs, CS 20156, 38042 Grenoble Cedex 9, France. 

 

Abstract 

Contrary to the high impact of most common structural problems - symmetry and structure 

determination - in large fields of Science, the study of magnetic structures, from a 

crystallographic point of view, is still limited to the field of Physical Crystallography and 

microscopic magnetism. The description of magnetic structures has never attained the 

degree of standardisation of common Crystallography, or even Superspace Crystallography. 

The reasons are related to the relatively small community in this field. The situation is 

changing and, from 2011, the Commission on Magnetic Structures of the IUCr is making 

a development effort in order to improve the current situation. In these notes I summarize 

the most broadly used descriptions of magnetic structures and the ways existing in the 

FULLPROF SUITE to handle the analysis of magnetic neutron diffraction data. These notes 

are complemented with other documents distributed separately in the tutorial sessions. 

 

Introduction 

 

In conventional Crystallography an extremely useful simplification for describing the 

electron and nuclei density is the concept of atomicity that reduces the scattering density 

to well defined object - the atoms - represented as mass points (or spheres) characterised 

by their chemical nature, their positions within the unit cell and their displacement 

parameters describing the dynamic (static) spread-out around the equilibrium (average) 

positions. The symmetry properties of periodic arrangement of atoms/points are well 

described by the 230 space group types in three dimensions (3D) [1]. More complex spatial 

arrangements of atoms may need to be described by periodicity in higher dimensions 

(superspace approach), so that the atoms become atomic surfaces [2]. Incommensurate, 

composite and quasi-crystal structures represent a small part of the huge amount of 

materials that can be described by conventional 3D Crystallography. The success of 

Crystallography has been enhanced by the fact that atoms are effectively visible (as small 

balls) using modern electron/atomic force/tunnel microscopy. 

Under the term Magnetic Crystallography we group a special subfield of Crystallography 

concerned with the description and determination of the magnetisation density or, in 

quantum mechanical terms, the spin density in solids. The corresponding classical objects, 

useful to describe the magnetic scattering density, are vectors, represented by arrows, 

defining the elemental magnetic moments (dipoles) of the magnetic atoms (those having 

unpaired electrons). A magnetic structure corresponds to a particular, nearly static, spatial 

arrangement of magnetic moments (solid phase) that sets up below the ordering 

temperature. Above the ordering temperature the system is in the paramagnetic state (liquid 



phase). The magnetic structures are commonly represented as a set of arrows, associated 

to the magnetic atoms, with magnitudes and orientations characteristics of the particular 

structure. There is no hope to visualise, in a near future, the elemental magnetic moments 

using a special kind of magnetic microscope. Notice that magnetic imaging, using the effect 

of magnetic fields created by matter, is only possible for ferromagnets, or ferrimagnets, at 

a mesoscopic level. Contrary to crystal structures, many magnetic structures are non-

commensurate: the periodicity of the orientation of the magnetic moments is not 

commensurate with the underlying crystal structure. This is a consequence of the 

competition of the exchange interactions giving rise to a kind of frustration in many 

compounds. 

The symmetry properties of commensurate magnetic structures are currently described 

using two different approaches: the magnetic Shubnikov groups [3, 4] and the group 

representation analysis [5-7]. For incommensurate magnetic structures the representation 

analysis can also be used but the most complete way of working with this class of magnetic 

structures is the use of the concepts of superspace crystallography [2], including now spin 

reversal as additional operator, to work with magnetic superspace groups [8]. General 

documents concerned with magnetic structures and their mathematical description are 

gathered in references [9-11]. Here we will concentrate on how to work with the programs 

of the FULLPROF SUITE using the minimum strict formulae for facilitating the reading. 

 

The programs of the FULLPROF SUITE have been developed by the current author and 

collaborators from the beginning of the nineties. The first published description of features 

available in FULLPROF for incommensurate magnetic structures was done in [12]. In that 

article there was also the first description of the program MAGSAN for determining 

commensurate magnetic structures using Simulated Annealing, later included in the 

program FULLPROF for general crystal and magnetic structures. By the middle-end of the 

nineties three programs, MODY, SARAh and BASIREPS [13, 14, 15] (this last included 

within the FULLPROF SUITE), for helping to determine magnetic structures. These programs 

use the representation analysis popularized by Bertaut [5] for generating the basis vectors 

of the irreducible representations (irreps) and were distributed and used by the community. 

The FULLPROF SUITE is being developed permanently and it is currently the most used set 

of program for handling magnetic structures using powder or single crystal neutron 

diffraction data. The most recent version includes the possibility to work with magnetic 

superspace groups. 

 

We assume the reader has a good knowledge of crystallography and experience in working 

with single crystals or powder diffraction data. The program FULLPROF was developed 

motivated by the needs of the author and later made available to the community. This 

means that it is not a black-box program guiding the user through the data analysis 

imposing a unique way of working. The user can manage completely the input model 

provided he (or her) knows the rules of the input control file (called hereafter PCR file), so 

the learning curve may be steeper than for other computer programs.  

Some facilities have been developed in the course of the years to make simpler the use of 

the program.  In particular the graphic user interface (|GUI) program EDPCR is able to 

handle the major part of options of FULLPROF without needing an explicit edition of the 

raw PCR file. This interface allows a combined way of working because the user may edit 



manually the text of the PCR file within the GUI, make a change by hand and then reload 

the modified PCR file. EDPCR will detect automatically that a change has been produced 

and ask the user to reload the file. 

 

Elementary description of Magnetic Structures in the magnetic unit cell 

 

In crystallography the independent atoms are described by their chemical nature, the 

position in the unit cell, which is repeated in three directions giving rise to a periodic 

structure, and a set of symmetry operators (common to all atoms) constituting one of the 

230 space group types. The symmetry operators generate the rest of atoms in the unit cell.  

 

Ignoring symmetry (except the translation symmetry), a list of all the atoms, with their 

fractional coordinates, thermal displacement parameters and occupation probabilities, 

describes completely the crystal structure. We will ignore in the following thermal and 

occupation parameters. This list of chemical composition and coordinates is equivalent to 

a description in the space group number 1: P1. 

  

Symmetry is extremely important because the number of free parameters to be obtained 

from experimental data is minimized. The extraction of all the coordinates when the 

description of the crystal structure is done in P1 is usually hampered by the limited number 

of observations and correlations between the parameters in the refinement.   

The description of a magnetic structure in P1 means that, in addition to the coordinates of 

the atoms we need the list of magnetic moments attached to each atom. Notice that the 

magnetic cell of a commensurate structure is, in general, a multiple of the crystallographic 

cell or may coincide with it. The components of the magnetic moments are given in Bohr 

magnetons with respect to a basis formed by unitary vectors along the conventional crystal 

basis U=(a/a, b/b, c/c) = (e1, e2, e3). This simple way of describing a magnetic structure is 

a particular case of whatever of the options given below.  

 

Concept of propagation vector(s) for describing magnetic structures within the 

crystallographic unit cell 

 

Whatever class of magnetic structure can be represented by the Fourier series: 

 

                       [ 2 ]lj j lexp i  k

k

m S kR    (1) 

This defines the magnetic moment of the atom numbered j in the unit cell having as origin 

the lattice vector Rl, the atom position in the crystal is Rlj = Rl + rj. The k-vectors are 

defined in reciprocal space and are called propagation vectors of the magnetic structure. 

They are restricted to the first Brillouin Zone (BZ) because adding a reciprocal lattice 

vector H does not change the sum. Two propagation vectors are equivalent (kk’) if they 

differ in a reciprocal lattice vector. 

 

We may have defined (1) in a slightly different manner also usual in literature (common 

convention in superspace approach). Instead of writing Rl in the argument of the 

exponential function, one can write Rlj = Rl + rj: 
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 In such a case the Fourier coefficients, jkT , are related to 
jk

S by a phase factor, 

( 2 )
k k

S T krj j jexp i  , that depends on the atom positions inside the unit cell. In the 

following we will use the convention (1) that has some advantages for commensurate 

structures and the convention (2) for the case of using magnetic superspace group 

symmetry. The general expression of the Fourier coefficients used in FULLPROF is given 

by: 
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In the case of using superspace approach for a single pair (k,-k) the convention (2) is used 

and the Fourier coefficients jkT  are written as: 

cos sin cos cos cos sin sin sin

, 1 , 2 , , 1 , 2 , 3
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The magnetic Bragg reflections are indexed by diffraction vectors h=H+k. Reflections 

having k0 are called satellite reflections and those having h=H are fundamental 

reflections. 

Using the convention (1), the Fourier coefficients are identical to magnetic moments when 

there is a single term in the sum and k=1/2H. 

 

Working with Magnetic Structures in FULLPROF 

 

In usual neutron powder and single crystal diffraction the incident beam is non-polarized 

so that interference terms in the scattering cross section do not play a role. The intensity of 

a Bragg reflections is the sum of the magnetic and nuclear contribution. This allows to treat 

the magnetic contribution as a separated phase in addition to the normal nuclear 

contribution.  

 

There is a phase-dependent parameter in FULLPROF noted Jbt that informs the program 

what kind of intensity calculation is to be done with the information provided in the PCR 

file for the current phase. The format of the file and the provided information depends on 

the value of Jbt (see the manual). There are several ways of working with FULLPROF to 

analyse magnetic structures. A magnetic phase treated independently of the nuclear 

structure can have the following values: 

 

Jbt=1. Normal way of working with magnetic structures using the formalism of 

propagation vectors. Refinable parameters are the components of R and I or the 

coefficients of the basis vectors of irreducible representations. 

Jbt=-1. As above but the amplitudes of Fourier coefficients R and I are given in spherical 

components. 

Jbt= 5. P1 real space description of incommensurate magnetic structures of conical type 

with a common cone axis oriented in an arbitrary direction. 



Jbt= 10. In this case the nuclear and magnetic phase are combined in a single phase. 

One can use directly Shubnikov groups or standard Fourier coefficients as is Jbt=1. 
 

Jbt=-6. Nuclear and magnetic contributions are treated in a single phase using symmetry 

modes of a higher symmetry phase (e.g. the paramagnetic phase). Only for commensurate 

structures. 

 

Jbt=7. Magnetic structure described using magnetic superspace groups. The current 

version treats only incommensurate magnetic structures within a commensurate crystal 

structures: all displacement amplitudes of atom positions are zero.  

 

Moreover there are other four phase-dependent parameters relevant for magnetic 

structures: 
 

Nvk: Informs the program of the number of propagation vectors describing the magnetic 

structures. When k-k, Nvk is given a negative value. For Jbt=7, Nvk is always positive. 

 

Irf: Informs the program how to generate reflections. Irf=0 generates all reflections 

using the symbol of the space group symbol or from the provided list of symmetry 

operators; Irf=2 reads reflections and multiplicities from a file; Irf=-1 generates only 

satellite reflections. If Irf=4 experimental integrated intensities are provided (mandatory 

for single crystals). 
 

Isy: Informs the program how read and use symmetry in the magnetic phase. We have 

the following cases (details and examples will be provided in the tutorials):  
 

Isy=0.The symmetry operators are generated from the symbol of the space group 

or obtained from the database of Shubnikov groups (in this case other 

considerations should be complied)  

 

Isy=1. The symmetry operators are provided as numerical matrices and vectors. 
 

Isy=-1.The symmetry operators are provided as SYMM (e.g. x,-y+1/2, z) and 

MSYM symbolic operators. The MSYM operator representing a rotation matrix M 

and a phase  in units of 2 (M,) (e.g. -u, v,-w,). The MSYM operators act on 

the Fourier coefficients as: 1 { 2 }s s sM exp i  k k kS S . The phase factor  for 

commensurate k=1/2H magnetic structures is normally zero because the Fourier 

coefficients are real vectors coinciding with the magnetic moments. 
  

Isy=-2.The symmetry operators acting on atom positions are given as SYMM 

symbols and the calculation of the Fourier components are performed as linear 

combination of basis vectors of irreducible representations.  
 

Isy=2. The symmetry operators are given like SYMM symbols complemented 

with +1 or -1 for unprimed and primed elements respectively (e.g. x,y+1/2,-



z,-1). For superspace approach only the generators of the group are needed in the 

form:  x, y+1/2,-z, t+1/2,-1 or as described in magnetic CIF files as 

x1,-x2,x3,-x4+1/2,1. 
 

Hel=2: In combination with Jbt=-1 (or Jbt=-10) and Isy=-1 indicates to the 

program to use a direct space formulation of incommensurate multi-helical magnetic 

structures. 

 

 

Commensurate Magnetic Structures in FULLPROF 

 

In the case of commensurate magnetic structures one can use the formalism of propagation 

vectors in spite of the existence of a magnetic unit cell. The symmetry constrains can be 

obtained easily from the calculation of the basis vector of the irreducible representations 

of the propagation vector group Gk. One can use the program BASIREPS or SARAh to 

partially construct the PCR file if one prefers to use this method instead of the 

crystallographic magnetic groups. For irreps of dimension 1 there is a one-to-one 

correspondence with a Shubnikov group and for k=0 the symbol of the magnetic group can 

be easily be obtained from the character table of the irreps. The basis vectors for each 

particular crystallographic site provide directly the constraints to be applied to the 

component of the magnetic moments. In the case of irreps of dimension higher than one 

there are several options for the possible magnetic groups depending on the direction of 

the order parameter. Using the propagation vector formalism (Jbt=1) and the option 

Isy=-1 the magnetic structure factor calculated by is given by: 
2
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The index j running for all magnetic atom sites in the magnetic asymmetric unit (j =1,…n) 

and the second sum over the symmetry operators, indexed by s, described by the SYMM 

({ }sS t ) and MSYM ((M,)s) items in the PCR file. For k=1/2H the phase factors s=0 and 

the Ms matrices corresponds to the magnetic group operators Ms =s det(Ss) Ss, described in 

the Opechowski-Guccione setting (see [11] for details). In such a case, the Fourier 

coefficients correspond directly to the magnetic moments: j jkS m   

If one wants to use directly the basis vectors of the irreps the expression of the Fourier 

coefficients (in this case they are real) is given by the linear combination: 
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Where the vectors ( )n js



k
S correspond to the atomic components of the basis vectors or the 

irrep  ; n is an index running from 1 up to n, being n the number of times the irrep  

is contained in the reducible magnetic representation mag and  runs from 1 to the dim(); 

and they are calculated using the program BASIREPS. The coefficients nC 



k
are the free 

parameters of the magnetic structure. 

  

The magnetic structure factor in this case is: 
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Where we have written T

s sSh h (superscript T stands for transpose of matrix Ss). 

Notice that this formalism can also be applied to incommensurate magnetic structures. 

 

Commensurate structures have a magnetic space group with a magnetic unit cell. One can 

use the Shubnikov group of Type 4 using the Belov-Neronova-Smirnova setting (see [11]) 

for describing the symmetry operators in the magnetic unit cell. There are programs in the 

Bilbao Crystallographic Server (BCS) [16-18] or ISODISTORT [19] that are able to 

produce directly a magnetic CIF file or a template of PCR file with the appropriate list of 

operators for the case discussed above. The Shubnikov description in FULLPROF is 

accessible if one uses Jbt=10, Isy=2 and Nvk=0. The program can read the list of 

operators included in the PCR file by the user or generated by one of the program 

MAXMAGN or k-SUBGROUPSMAG as a magnetic CIF file. There is a utility in the 

FULLPROF SUITE that is able to convert a magnetic CIF file to a PCR template. The utility 

program is called MCIF_TO_PCR and is directly accessible from the Tools menu of the 

FULLPROF SUITE toolbar, the same utility is also available at the BCS. The magnetic 

structure factor in this case uses only magnetic moments and no Fourier coefficients nor 

propagation vectors: 
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This expression of the magnetic structure factor is quite close to that for calculating the 

nuclear intensities of crystal structures except for the vectorial character. Examples of the 

use of this options will be presented during the tutorials. 

 

 

Incommensurate Magnetic Structures in FULLPROF 

  

Calculations ignoring symmetry 

 

The option Jbt=5 allows to introduce the description of a conical magnetic structure in 

terms of magnitudes of magnetic moments, half-angle of the cone, orientation of the 

common axis and phases. The reason for this kind of option is that conical structures with 

a common axis is predicted by theoretical calculations in important class of materials [20, 

21]. The formula used for calculating the magnetic structure factor for fundamental and 

satellite reflections is that provided by Hasting and Corliss [22]. 

 In case of difficulties for determining a magnetic structure that shows macroscopic net 

magnetization, and satellite reflections, this option is quite useful in combination with 

simulated annealing. Examples of this approach will be discussed during the tutorials.  

 

Calculations using Sk Fourier coefficients or basis vectors ( )n js



k
S of irreps 

 



These options corresponding to Jbt=1, Nkv<0 and Isy=-1 or Isy=-2. The 

expressions of the structure factor is formally equivalent to the expressions (4) and (6), but 

now the phase  is not zero and the C-coefficients in (6) may be complex. The user can 

apply symmetry constraints and determine the phase factors as deduced from the analysis 

of the basis vectors of the irreps but this has to be done carefully. In particular the program 

BASIREPS calculates only the representations and basis vectors of the little group Gk from 

which the full representation of the star of k can be calculated using the induction formula 

[11]. Moreover, the basis vectors are calculated in the general case (arbitrary direction of 

the order parameter, lowest symmetry!). The selection of the order parameter and the 

application of the induction formula has to be done, presently, by the user. In the most 

simple case of a single pair (k, –k) both arms of the star have to be considered and the 

irreps are at least of dimension 2. The symmetry operators existing in the paramagnetic 

group transforming k into –k should be added to the list of relevant operators (extended 

little group: Gk,-k) otherwise symmetry can be neglected introducing artificially more 

parameters than needed for describing the magnetic structure. This approach is the able to 

handle whatever kind of magnetic structure but it is cumbersome for the non-specialist user.  

 

There is another option, in which MSYM operators can be used and the parameters to refine 

are simple geometrical parameters and magnitudes of magnetic moments. This corresponds 

to the option Hel=2 mentioned above. In this case we use a particular form of the Fourier 

coefficients for the first representative of atom at site j:  

1
[ ] ( 2 )

2
j uj j vj j jm im exp i   k kS u v     (8) 

In which the unitary vectors uj and vj are orthogonal and form a plane in which the magnetic 

moments lay. The normal to this plane wj= uj  vj completes a Cartesian frame attached to 

the atom. Depending of the orientation of the propagation vector k with respect to the plane 

(uj, vj) the structure may be a normal spiral or helix (k parallel to wj) or a cycloid (k 

perpendicular to wj). The free parameters per independent atom are the three Euler angles 

of the Cartesian frame attached to the atom with respect to the Cartesian frame of the crystal, 

the moment components muj, mvj and the phase factor. Of course if symmetry constraints 

some particular orientation the number of free parameters is smaller. If muj = mvj the 

envelope of the helix is circular otherwise is elliptical. 

    

Calculations using superspace operators and Tk Fourier coefficients 

 

This option is the most recent capability included in FULLPROF it corresponds to Jbt=7. 

Let us consider a general case with d propagation vectors kp, a Bragg reflections is indexed 

like: 

* * *
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The integer indices (h1, h2, h3, m1, … md) = (h1, h2, … h3+d) may be considered as the 

coordinates in the reciprocal space of a (3+d)D superspace. For details the reader can 

consult the reference [23]. The superspace has a 3D section which is the real physical space 

(called also external space) and an internal part of dimension d corresponding to phase 



shifts of the modulation functions in the external space. In real space the magnetic moments 

can be written as a very general Fourier series as: 
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Ir . The initial phase tp is arbitrary and may be taken as zero. A point in 

superspace has coordinates: 
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An operator in superspace has the form: 
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The inverse operator is needed for the action in modulation functions, it is obtained as 

extended matrix like: 
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Where g is the 33 rotational part of the parent 3D operator, Hg is a d3 matrix and Eg is 

a dd integer matrix with zeros and ones, verifying the relations: g g σg E σ H , where  

is a d3 matrix containing as rows the components of the propagation vectors. The 

parameter  is equal to 1 if the operator is unprimed and -1 if it is primed. The other 

matrices are obtained by identification of the corresponding terms. These matrices are 

determined by the action of the 3D operators of the parent paramagnetic space group on 

the propagation vectors. In in the crystal structure the atom k is obtained for the symmetry 

operator {g|t} applied to the atom j, and if the derived superspace operator is a symmetry 

of the magnetic structure superspace group, its action on the modulation function is given 

by: 
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Similarly we can write an equation a little bit simpler putting the argument of the 

transformed moment in terms of the internal coordinates of the source atom as: 
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This equation is the basis for obtaining the constraints on the amplitudes 1 1( ,.., ) ( ,.., )

cos sin,d dn n n n

j jM M

for the site j. The program FULLPROF calculates the magnetic structure factor applying 

these equations when the complete list of operators are obtained from the provided 

generators. Currently the determination of the magnetic superspace group is done by trial 

and error starting a process involving the group of the propagation vector and the 



representations. It is more simple use ISODISTORT for getting the list of the possible 

groups and try the operators for calculating the diffraction pattern. 

What is important is to determine how the amplitudes 1( ,.., ) ] ][ [ [

cos sin

]1
( )

2
T T M Mdn n n n n

j j j ji  

transform under the symmetry operators of the superspace group and then write in a general 

form the expression of the magnetic structure factor in 3D when the underlying crystal 

structure is not modulated. The final result is given by the formula: 
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In which ,[( )]h Hs n are the integer indices of the reflection and g, Hg and Eg are the 

submatrices of a general superspace operator and ts = (tg, tI) is the translational part of the 

operator. We have used the notation [n] = (n1, n2 … nd) as a d-dimensional vector 

characterizing the satellite reflections. The application of the submatrix Eg transforms [n] 

into another set of indices [n’] that are equal, or opposite, to a provided set of T[m], and we 

can apply the constraint  T[-m]= T[m]*. For calculating the symmetry constraints on T[m] for 

a particular atom in position one has to apply the equations: 
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In the general case with a several of propagation vectors and set of indices [n] these 

equations can be written in composite matrix form and the constraint relations can be 

obtained as the eigenvectors corresponding to eigenvalues equal to 1. 

 

Determination of magnetic structures using the programs of the FULLPROF SUITE 

from Neutron Powder Diffraction 

 

I will describe shortly how to work with the different programs of the relevant for magnetic 

structures and the steps needed for determining and refining a magnetic structure using 

Neutron Powder Diffraction (NPD). 

 

Of course for determining a magnetic structure the paramagnetic crystal structure should 

be well known and its refinement is a pre-requisite before starting to determine the 

magnetic structure. The procedure for determining a magnetic structure using NPD is 

relatively simple.  It can be summarised as follows: 

 

1: Collect a NPD pattern of the sample in the paramagnetic state (T > TN or TC). Refine the 

crystal structure using the collected data and get all the relevant structural and profile 

parameters. Use FULLPROF and WINPLOTR for doing this task. 

 

2: Collect a NPD pattern below the ordering temperature. Normally additional magnetic 

peaks appear in the diffraction pattern. It is important to make a refinement by fixing all 

the structural parameters, without putting a magnetic model in the PCR file, in order to see 

clearly the magnetic contributions to the diffraction pattern. Get the peak positions of the 



additional peaks using WINPLOTR-2006 and save them in a format adequate to the 

program K-SEARCH. 

 

3: Determine the propagation vector(s) of the magnetic structure by using the program K-

SEARCH or by trial and error with an additional phase in the PCR file treated in Le Bail Fit 

(LBF) mode (no magnetic model). If there are no additional peaks and only an additional 

contribution to the nuclear peaks is observed, the magnetic structure has as propagation 

vector k = (0, 0, 0). 

 

4: Once the propagation vector is determined, use the program BASIREPS in order to get 

the basis vectors of the irreps of the propagation vector group (Gk, see reference [11] for 

details). With the help of this program one can determine the Shubnikov group and the 

appropriate magnetic symmetry operators, or, alternatively, use directly the basis vectors 

of the irreps. If the propagation vector is rational, another option is to use the Bilbao 

Crystallographic Server or ISODISTORT to obtain templates of PCR files for the possible 

Shubnikov groups. 

 

5: Solve the magnetic structure by using the symmetry information obtained in step 4 using 

trial and error methods (5-1) or the simulated annealing (SAnn) procedure (5-2) 

implemented in FULLPROF. 

 

5-1: In the first case one has to modify the PCR file used in step 2 by adding an 

additional magnetic phase by putting Jbt=1 (magnetic phase with Fourier 

coefficients/magnetic moments referred to the unitary basis along the unit cell axes),  

Irf=-1 (only satellites will be generated). The best way to create such additional magnetic 

phase is to copy it from an already existing PCR file similar to that of the current case and 

modify it using the symmetry information obtained in step 4. Run FULLPROF fixing nearly 

all parameters, except the magnetic moments or the coefficients of the basis functions, and 

check in the plots if the calculated magnetic peaks have intensities close to the observed 

ones. If not, change the magnetic model (use another representation or other magnetic 

symmetry operators) and try again. In some cases this is enough to solve the magnetic 

structure. In case this does not work use the method described in 5-2. 

 

5-2: In the second case one has to modify the PCR file used in step 2 by adding an 

additional phase in LBF mode (as for one of the options in step 3). This additional phase 

has no atoms and we have to put Jbt=2, Irf= -1 and Jview=11. The nuclear phase has 

to be treated with fixed scale factor and structural parameters. This allows getting the 

purely magnetic reflections in a separate file that can be used by FULLPROF in SAnn mode. 

This method will be explained during the tutorials in detail. 

 

6: Refine the magnetic structure using the Rietveld method implemented in FULLPROF. 

Once the magnetic model gives a calculated powder diffraction pattern close enough to the 

observed one, we start the refinement phase. If we use the trial and error method (5-1) the 

refinement step is just the continuation of the previous step. If the simulated annealing 

method (5-2) was used we have to translate the final solution, stored in an automatically 

generated PCR file, to the file for treating directly the powder diffraction profile.  



 

The different steps described above and their order may be changed slightly depending on 

the previous knowledge the user has on the sample. We will illustrate these steps with a 

simple cases that may be useful for beginners in magnetic structure determination. We 

provide together with this document the data files and PCR files corresponding to the 

examples treated in the reference [11] and other cases. 
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