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Group theory (and magnetism)

* History has given us several formalisms
- Space groups (black and white, ‘magnetic’, coloured, spin space groups, superspace
groups)
- Representation theory
- Often interpreted as ‘the method of Bertaut’

- Broader group theory framework (including representations and
corepresentations)

¢ FAQ -Which is best?
- An echo of the past:

- ‘A comparison of these two papers - the one by E.S. Fedorov [1891] and
the other by A. Schoenflies [1888] -clearly shows two principally different
approaches by the two scientists : for Schoenflies it is just an interesting
case of representation in the theory of groups, in particular infinite groups,
which were being developed at that time; for Fedorov it is a means of
studying real systems of configurations, the underlying feature of a crystal’

9,

Translated by: A. Werner, Bell Telephone Laboratories, Inc., N.Y.

Group theory (and magnetism)

* Frameworks

* Allow methods for simplifying analysis of a problem in systems
possessing some degree of symmetry.

- Symmetry works with Landau theory (more later)

¢ What is allowed vs. what is not allowed

And what might be allowed iff (iff = if and only if) ...
— Neumann's principle (relating symmetry to physical properties)

* Ifacrystal is invariant with respect to certain symmetry elements, any of its physical
properties must also be invariant with respect to the same symmetry elements

*  Keyword: Invariance of the physical properties under application of symmetry
operators.

— Couplings /¢IO¢() dr = <¢1\O\¢0>

Overview of course
Part |- Magnetic structures (by all the speakers)

* Using the symmetry language

— Listen to the historical background and their frameworks
— Be open to different views (e.g.‘time reversal’ :-) - build your perspective
— We will show you the rules - what magnetic structures are

— Symmetry operations define a group. Their properties are defined/
underpinned by representation theory.

— ‘Symmetry’ is an unspecific term. Think of a hierarchical structure
with differences being about particular foci.

— Start thinking about the unseen, why your refined structure is just
be part of what is happening

= (Goal : learning to translate your problem into the different languages.




My part of the course - today
Part 2a- Recap of group theory and representations

* The basics

— Why do we need to invoke symmetry?
— Recap of some group theory, multiplication table ...

* Moving from point groups to crystalline (commensurate)
solids

—Rotation-translation operations

—Introduction of translational periodicity
—Representations and irreducible representations
—More complex irreducible representations

= Goal : starting to think about the different types of
symmetry and how those of a can be broken down in to
separate contributions

My part of the course
Part 3 - Refining magnetic structures

* Philosophies and pathways
+ Continuous phase transitions
* Opening the door - zeroth order approximations
- Isotropy / stabilizer groups
* Energy scales - a hand-waving approach
* Couplings - food for thought
- “Asingle IR”

* Symmetry and phase transitions
* My ‘building-up’ principle

= Goal : Using necessity - Ockham’s razor - and care for the unknown

My part of the course
Part 2b- Building a magnetic structure

* From irreducible representations (IRs) to basis vectors
— The propagation vector, the Brillouin zone

— From the space group Go to the little group of the propagation
vector G

— Magnetic representation

— Permutation representation

— Axial and polar vectors, representations
— Basis vectors : a general basis vector space

= Goal : Explore the basis vector description of magnetic
structures

My part of the course - workshops
Part 4- Hands on calculations and data refinement

* Later parts of the course are focused on introducing SARAh
and using it with FullProf and GSAS (NOT GSAS-2).

— Go through several examples of commensurate and
incommensurate structures

— (GSAS-2,is not ready for representational analysis yet... Sorry,
Bob!)




Let’s kick off :

Q. Why should an experimentalist use symmetry?

Complex incommensurate magnetic ordering in B-
Mn,_Ru, (x=0.12) - don’t expect an east answer!
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Why should an experimentalist use symmetry?

* Look at your Hamiltonian, H, and then think of the more likely
magnetic structure

— Don't have H ? Then have many possibilities ...
* Information is destroyed in many ways
— The magnetic form factor: J(Q)

— The magnetic structure factor: F, | (Q)

— Powder averaging (S, k - domains)

— Domain averaging (powder, single crystal)
— Under-defined problem

Phase transitions in solids

* Phase transitions typically involve symmetry

breaking High symmetry phase
- going to a phase with lower symmetry

* Transition are classified as either |st order
(discontinuous) or 2nd order (continuous)

* 2nd order transitions follow Landau theory
* Asimple example:

Paramagnetic = Antiferromagnetic
Lower symmetry phase

/@ e_ ® g _96_96_ Symmetry operations are
g = Q e—:>4@_9€_9 lost, e.g. rotational-

translations, translational

- ® g A _9@_96_ symmetry, and ‘time-reversal’,
the symmetry under reversal
of the electric current




Groups - putting symmetry operations together
— point groups and space groups

Gy

a set of elements AB,C...

the product of 2 elements is a member of the group ABeG

— the product is associative A(BC)=(AB)C
there exists a unique identity (E)

— every element has a unique inverse
AA-I=ATA=E

— We will note the order of a group h

(The order of a group is simply the number of elements in a
group)

Irreducible representations

¢ |In matrix terms:

— A representation is reducible if there is a similarity transformation (change
of basis) that sends all the matrices d(g) to the same block-diagonal form
— All other representatives can be written in terms of these IRs

* Afinite group has a limited number of these IRs

i N G N

Applying operations in sequence
— the multiplication table

Cav E C2(z) | Ox Oyz

O E E Co(z) | Oxz Oyz

z Caz)|C2z) | E Oyz | Oxz

Hi Ha Oxz | Oxz Oyz E [Cz2)

y Oyz Oyz Oxz CZ(Z) E

+ 4 different operations

» Combine operations, e.g. look at the atoms HI and H2, the px orbital on O
o(xz) x Co(z) = o(yz)

)= ) =)

IRs- point groups and space groups

Irreducible representations

— “a set of matrices, each corresponding to a single operation of the
group, that can be combined amongst themselves in a manner
parallel to the group elements”

— Irreducible- these are building blocks of symmetries
— In point groups irreducible representations are order | (AB), 2
(B).3(T)egTyE,

— In space groups the rotational-translational operations lead to
IRs of order up to 6

e Marked increase in the complexity of possible structures




IRs and the Great Orthogonality Theorem

Irreducible Representations of Space Groups

* If D is a reducible representation.

* The number of times that a representation i appears in a Table 1
Irreducible representations of R3¢~C$y, k = 0 and RIm-C},,k=0andk= [% % "il
decomposition of D is 2
P Ca| E| 2Cs| 30y \ | o
Symmetry operations ] 3 3? m m3 m3*
A1 1 1 1 Representations
1 A " 1 1 1 1 1 1
r; A n 1 1 1 -1 -1 -1
R . * Az 1 1 -1 . E 1. . ‘. R AN A
ni = > xi(9)"x(9) = : )Y GED)
- Magnetic moment
e 2 1.0
example 1 Six Sz Siy —S,, =Sax =83z
example 2 Six S3z Say =52y =S2y =53z
Siy S3x S22 =S2x =51z =83y
D 3 O 1 81z S3y Sax =Sz =S1y -S3x _

nA; =1/6(1x3+2x[1x0]4+3x][1x1])
nAy =1/6(1x34+2x[1x0]+3x][-1x1])
nE=1/6(2x342x[-1x0]+3x][0x1])

1
0
1

& A crystalline material: a starting point for some symmetries
A framework that needs different symmetries

Group theory of magnetic structures

|. Translational symmetry
Part 2b: Building a magnetic structure- from irreducible - Propagation vector. k %

representations to basis vectors 2. Space group i\ N 4&5\& - ?
Qo gNO A
ST Lo

- parent symmetry

D
- compatibility with k %

3. Atom position | 4O me AN C)’f

4. Magnetic moment ? L vi’ . C{?i

5. The Hamiltonian




Rephrasing symmetries

Magnetic structures as Fourier sums
Space group (before the ordering), G,
The ordering wave vector, k

The symmetry that is compatible with k, the little group G,

The symmetries of G,, the irreducible representations

S N

The symmetry of a magnetic moment in a crystal structure, i.e. the position
(permutation representation) and the moment itself (axial vector)

o

The symmetry of, and within, basis vector spaces, isotropy groups

N

The symmetry of any single-ion effects (consequences of spin-orbit)
8. Symmetry of the Hamiltonian, symmetry of G,

The propagation of magnetic structures through
the crystal- with a single k-vector

< w exp[-2niket]= (01 0) exp[-2ri(0 0 %)(0 0 4)]= (0 1 0)
<< w expl-27iket]= (01 0) exp[-2mi(0 0 %)(0 0 3)] = (0 -1 0)
_(_/_ =  expl-27iket] = (0 10) exp[-27i(0 0 %)(0 0 2)] = (0 1 0)
W exp[-2nik-t]= (0 1 0) exp[-27i(0 0 %2){(0 0 1)] = (0 -1 0)
< v expl ] Pl ]
b
a
w expl-2riket]= (01 0) exp[-2mi(0 0 %)(0 0 0)] = (0 1 0) g ~F omiE,
— — Eoo— £y
=Y C i, e

*The wavevector k (the of the magnetic structure works with the basis
vectors to create a simple definition of the structure

*Once the moment orientations in the zeroth (nuclear) cell are known, those of all
other moments related by primitive lattice translations in the cell can be calculated
from t; (the translation vector relating the two moments) 23

Definition of magnetic structures, phonons,
electronic orbitals

* A linear combination of plane waves (basis vectors, Fourier
components)

* Bloch waves - Eigenfunctions of a periodic Hamiltonian can be
constructed from Fourier components

ik
i’bj W
m,

Tk =2mwik-t;;
@i v e Y

ch @ , é—Qﬁ‘ik"f@j

* Once the moments in the primitive unit cell are defined, the k
vector defines every other spin in the structure

The formalism of the propagation
vector, k

_ Z kETk—2mik-Ty;
- CV i,V € !
v,k

* Example - single moment

I
in the asymmetric unit ‘:.\\ ‘\;:‘\\ M ,{i\ I~
(the primitive unit cell)

* Once ks defined, total }\\ \\ \\ \.7\ \\ \\

degrees of freedom = 3

* Don’t dtoi
Deonftneed to ncrease // i // 7 2l
lattice basis _L=. [

e e J R 6 R
= = :
J

| |
J | | S

A A A A

L




k-vector reduces space group symmetry : G,— G,

Constructing G, (the space group of the propagation vector)

— Need only consider the rotational part (h) of symmetry
operation (g):
g ={hI7}

— a subset of space group Go elements AB,C... that leave the k-
vector invariant G,eG,
Reciprocal lattice vector

e B =kh+7 e«

— i.e. defines those that are compatible with the translational

symmetry of k
G C Go

The Brillouin zone and different G, e.g. FCC

h
* The symmetry types of the different points in reciprocal space
« Different points, lines and planes have different compatible symmetry operations; different G,

ttp:/nanosurf.fzu.cz/wiki/doku.php?id=band_structure

* (Care with axis system)
» Several notations exist, Kovalev, Miller and Love, etc

Space group G, k-vector, G,

#227 k=(000) (N 48
elements

k=(0.500) (K 8

k=(0.50505) (L) 12

» Different points, lines, planes correspond to different
symmetries. They will have different G,.

The star of the propagation vector
e.g. k=(0.5 0.5 0.5) in space group Fd-3m,

111 11 111 111
"F(ESS)“?:(?S i)l‘3=(5‘3‘5)k*=(?5‘5>
K,
k:
E_ E &k —2mikd
m; = E C, Yy e K

v,k +«—— some or all of these arms may be involved




Back to the space group Go

* Go is the space group of the crystal structure a set of elements
ABC...

— Group structure of symmetry operations
* the product of 2 elements is a member of the group AeBG
* the product is associative A(BC)=(AB)C
* there exists a unique identity (E)
* every element has a unique inverse
s AAT=ATA=E
— Groups have irreducible representations

— G, is also a space group ...

Summary - Irreducible representations (IRs)

* Define the basic symmetry types for a group of symmetry operations
— Other symmetries can be built from combination of IRs

= Znyry

* In molecules, point groups have IRs up to order 3
— A (IxI matrices), E (2x2 matrices), T (3x3 matrices)
* In solids, space groups lead to IRs up to order 6

r® @ 7®)

Irreducible Representations of Space Groups

Table 1
Irreducible representations of RJc—C‘;,,_ k =0and R3m—Cgv,k =0andk = [% 35 %]
3 3 e3?
\ | or or or
Symmetry operations 1 3 3? m m3 m3?
Representations
r Ay ™ 1 1 1 1 1 1

r, A IS 1 1 1 -1 -1 -1

Y Y IO ) I G I ) I R I P

Magnetic moment
transformations

example 1 Six Sz Siy =Say -S2x =82z
example 2 Six S3z Say =S2y ~Say ~83z
sly Sax Slx ‘52:: —Slz ‘Say
Siz S3y Sa2x =52z =S1y -S3x

« Constructed IRs from the little space group G,

+ Character tables are not enough
» Source is important- calculated or tabulated

Projection of basis vectors : from IRs to BVs

—What are we trying to do?

* Find out what types of structure are possible for
moments at atomic positions

— How?
I. Permutation representation

—How the atoms are interchanged under the
symmetry operations of Gk

2. Axial vector representation %
—How the magnetic moments
are rotated under the

symmetry operations of G ﬁ’mti*\{ — #§

— Decompose symmetries using IRs of Gy ?




The permutation representation [erm

* Recap- a crystal structure is invariant under the symmetry operations
of its point/space group. However, equivalent positions can be
interchanged, permuted

A A— 4 A—C A—B

o2 ol:B—-C o©02:B—B 3 :B—C

b C—B C—A C—A

B C xoh=1 x@©2)=1 (3)=0
ol

* [perm describes how all the atoms are permuted

Symmetry of magnetic moments and
displacement vectors under improper rotations

Polar _
1 0 0 My —My
RIOM=10 1 0] [m, —1my
0 0 1 m, —m,
Axial 10 0 - M.
R(INM =det(h) |0 1 0] [my, ]| =[m,
0 0 1 m, m,

det(I) = —1
Polar vectors are reversed by inversion operation, axial vectors are
not. Mathematically, we can deal with this by multiplying by the
determinant

Symmetry of magnetic moments and
displacement vectors under improper rotations

A

° Polar

A.oA .

Polar vectors are reversed by inversion operation, axial vectors are not.

Putting it all together- the magnetic
(displacement) representation

* The permutation representation and the axial vector
representation are independent

1—‘mag = 1—‘permu:‘,ation X Faxial

* The magnetic representation can be decomposed into

IRs of G,
Fmag = ZnuFu
v

* The number of times IR I, appears is given by

n(é&) Z XTmag (9)XT, (9)"

n, =




Putting it all together- the magnetic

(displacement) representation

» The number of times IR T, appears is given by

LS o, (9)xr (9)°

n(GE) gGG,;

n, =

* This depends on the atomic site and may look like

Tmag2a = 1T @ 118 @ or(?

or

Tpnage = 208 @ 008" @ 2r(?

Basis vectors

* Define a degree of freedom

— Follows the symmetry of the associated IR
— Can be used to classify symmetry

* Does not decrease number of degrees of freedom

— i.e. 3 moment degrees of freedom per atom
— n atoms will have 3n basis vectors
— Simplicity from dealing with the categories separately

* Define symmetry as a linear combination, refine in terms
of mixing (weighting) coefficients

o e k_ k k _—2miki
m = E Ci; m; = E Cy iy e
i I/,E

Basis functions

* Symmetry adapted functions QNI
that have the same symmetry 10

as the IR- ‘associated’, non- ?ﬁ, (o5 3 ad O\g?

unique

¥t = ) dy(9) G g e PRI det () R g

ge€Gx

and a series of test functions, e.g.

$1=(100), g2 =(010),¢3=(001)

Working with basis vectors

40




Making magnetic structures with basis vectors

* Expanding the exponential

— The eigenfunctions of an electrons with a periodic Hamiltonian are Bloch waves.

with the form: - s —omik-Tys
mj = E :CV i,V e Y
v,k

— Magnetic structures are eigenfunctions of the spin-dependent electronic Hamiltonian and
have the same form

— If we expand the exponential, we see that it is made up of a Real cosine part and an
Imaginary sine part
L F R > - -
m; = E c, vy, [cos(—27rk: - t) 4 i sin(—27k - fﬂ
v,k

* This formalism very general and we will see that it can describe simple and exotic
structures, such as sinusoidal and helical structures

(*Note SARAh, works with atoms in the zeroth unit cell)

A simple antiferromagnetic (sine) structure
(' yexpl-2mik-t]= (0 1 0)exp[-27mi(0 0 ¥%)(0 0 4)]=(0 1 0)

<L <) yexp[-2mik-t]= (0 1 0) exp[-2mi(0 0 %2)(0 0 3)] = (0 -1 0)
_(_/,_ woexpl-2miket]= (0 1 0) exp[-2m(0 0 ¥2)(0 0 2)] = (0 1 0)

<< ( yexpl-2mik-t]= (0 1 0) exp[-2m(0 0 %2)(0 0 1)] = (0 -1 0)
c

_L__ > yexpl-2mik-t]= (0 1 0) exp[-27m(0 0 %2)(0 0 0)] =(0 1 0)

Basis vectors and k-vectors - a simple example

* Simple structures and-sine’structures

— The translational properties of a magnetic structure may be described by

_ E : k ..k —2mik-t;;
m] - CV 1/)i,u € Y
v,k

2
— Working with only one basis vector, ignoring the coefficient for simplicity
and expanding the exponential, this becomes

ity = GF, [cos(=2aF - i) + i sin(~2nF - £,

o
—If 1/) is real and the propagation vector is such that the sine part is zero,

we are left with a simple cosine curve with the moments of the same
amplitude.

Moving to incommensurate magnetic structures

What do we do differently for incommensurate structures?




Basis vectors and k-vectors
* Y¥is real and k is such that the sine component is non-zero

— Leads to m; being complex, so need to make it real

— The moment vector for an atom in the nth cell related to that in the zeroth cell by
translation t; is given by

m; = Ck: k 6727T’Lk<tlj + Ck: q/};f 6727”(710)%1‘]‘

v Yiw v

_ vk 1k —2mik-t;; k k o\x —27mi(—k)-t;;
mj - OV i,V € Y+ Cu ( i,u) € ¢ ) tis
- As

—k _ kx
LW wi,u
— Substitution and expansion of the exponential leads to
i,V

m; = 2Re( HEV) [COS(*QTFE'EJ)] + 2Im( ¥ ) sin(f27rl;~f;j)}

— Where the second term is zero as ¥ is real = Amplitude modulated sine structure
(spin density wave)

Basis vectors and k-vectors

* Yis complex and k is incommensurate

— Leads to m being complex, so need to make real moments

— The atomic vector for an atom in the nth cell related to that in the zeroth cell by
translation t is given by

k .k —2mik-t;; k (K —2mi(—k)-t;
mj = Ol/ T,V e 7” ! +CV ( i,l/)* € il ) !
— Substitution and expansion of the exponential leads to
N7

i, = 2Re(VF,) [cos(—2nk -t:-j)} +2Im(PF ) sin(—QwE.aj)}

— Where the second term is non-zero.
— If the real and imaginary parts are not parallel = circular or elliptical helix

Basis vectors and k-vectors
* ¥is real and k is such that the sine component is non-zero — —O0—
— Leads to m; being complex, so need to make it real
— The moment vector for an atom in the nth cell related to that ir] the zerottrtell by

translation t; is given by

— Ok ok p—2mikets; k =k ,—2mi(—kp-ti;
m; =Cj ¥, e i 4 Ck gk el i

v

ms: = Clc '(fk —2mik-ti; Ck k \* _—2mi(—k)t;;
J v Yip € T v (¢1u) € i K
- As

ko ke
Yo, =¥y

— Substitution and expansion of the exponential leads to

m; = 2Re( 2‘:,,) [cos(—2wﬁ-ﬂj)] + 2Im(1,5,§,,) [sin(—_27r “tij

h) sine
— Where the second term is zero as ¥ is real = Amplitude modulated sine sfructure
(spin density wave) cosine

Basis vectors and k-vectors
—&—0—>

* Y¥is complex and k is incommensurate @
— Leads to m being complex, so need to make real moments @

— The atomic vector for an atom in the nth cell related to that in the zergfh c@

translation t is given by @

— k k —2mik-ty; k k \* —2mi(—k)-ti;
mj =C, v e~ " ’ +Cl/ ('d)zu) € il )tis

— Substitution and expansion of the exponential leads to @
my = 2Re(15£,,) [cos(—27rlz . ﬂj)] + ZIm(@:,,) [sin(—27ri L.t

— Where the second term is non-zero.

(*Note SARAh, works with atoms in the zeroth unit cell) i) Jeettiplacdidinlix




Building structures : basis vectors and k-vectors

* A sine structure helix
¢ k incommensurate
* Y has is real, in a plane that contains (longitudinal) or does not contain (transverse) k

* Acircular helix
¢ k incommensurate
* ¥ has is complex, and has non-collinear real and imaginary components (equal magnitude) in a
plane that does not contain k

* A conical structure
* k incommensurate
* Y has is complex, and has non-collinear real and imaginary components (equal magnitude) in a
plane that does not contain k
« k=(000)
* ¥ is ferromagnetic and is perpendicular to the helix

* A cycloid
* kincommensurate
* ¥ has is complex, and has non-collinear real and imaginary components (equal magnitude) in a
plane that contains k

Which could happen? Think about entropy and phase transitions

Magnetic Representational Analysis
with SARAh and SARAh-Refine

Andrew S.Wills
UCL Chemistry

Magnetic structures - a Fourier series
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Group theory (and magnetism)

* Frameworks and method for simplifying analysis of a problem in systems
possessing some degree of symmetry.

- Works with Landau theory (more later)
* What is allowed vs. what is not allowed

— And what might be allowed iff...

* The ‘iff’ opens up the questions
— Couplings /¢TO¢0 dr = <(/)1|O|¢O>
* History
— Space groups (black and white,‘'magnetic’, coloured, spin space groups, superspace groups)
— Representation theory
— ‘The method of Bertaut’

— Broader framework (representations and corepresentations)




“Representation analysis of magnetic P
structures” - the method of Bertaut e

e o 565, A2 27 *  E.F. Bertaut, Acta Cryst. A24,217
o (1968)

Representation Analysis of Magnetic Structures

By E.F.BERTAUT

Laboratoire d*Electrostatique et de Physique du Métal,C.N.R.S., B.P. 319 et
Laboratoire de Diffraction Neutronique, C.E.N.G., B.P. 269, Grenoble 38, France

Applied k-vector (focus)

— Showed magnetic space groups
(’\ »j could be constructed from
: character tables of the
- | irreducible representations (of
Gy)
— Used projection method to
generate basis functions

>
Table 4. Representations and magnetic groups — Faurier series

in Pbam (k=0)

Ch of El ts and
P i the s iel groups
2 2y T s Tk —2mik-Ti;
r 1 1 202, T Peam Vi, =i, e Y
I R
r -1 11 22 Pbam’ . PR —omiRd
s -1 =1 1 22T  Pvam m; = E CF Yk e 2mikti
Is 11 =1 2 2, I  Poam ’
rs 1 =1 =1 2, 2/ T  Pbam vk
I -1 1 =1 22 Y Pba'm !
ry 1 =1 =1 272/ T  Pham' 53

Basis vectors and k-vectors
—&—0—>

* ¥is complex and k is incommensurate @
— Leads to m being complex, so need to make real moments B

:

— The atomic vector for an atom in the nth cell related to that in the zerdjl

translation t is given by @

mj = Clc k e-—27r1k~hj _+_CLC (,zp:cy)* e—Z7rz(-—k)~t.-j

— Substitution and expansion of the exponential leads to @
mj = 2Re(1[—;§,,) [cos(—27rl_s;- EJ)] + QIm(ﬁu) [sin(—?'iri Lt

— Where the second term is non-zero.
— If the real and imaginary parts are not parallel = circular or elliptical helix

=Requires non parallel BVs

(*Note SARAh, works with atoms in the zeroth unit cell) i) odttiplacdidilix

Bertaut’s method

* Fundamental propésition

—The eigenfunctions of an electrons with a periodic Hamiltonian are Bloch
waves with the form:

- Z kE 7k —2mik-t;
mj = Cl/ [N% € Y
v,k

—Magnetic structures are eigenfunctions of the spin-dependent electronic
Hamiltonian and have the same form

—If we expand the exponential, we see that it is made up of a Real cosine
part and an Imaginary sine part

i,V

M = Z CE gk [cos(—QﬂE - F) +1 sin(—27rE - f)}
vk

=This formalism is very general and elegantly describes simple and
exotic structures, such as sinusoidal and helical structures. You can
read a structure from its basis vectors and the k vector

When working with BVs, there is = Z Ciab

real and there is real...
* A purely imaginary basis vector is as real as a purely real one...
U = (1,0,0) 42 = (i,0,0)
o = —ith

— They are equivalent

* The linear combination of basis vectors can involve complex numbers
(phase relationships)

J1 + JT = 2R€(@51) .
(=i x 1) + (i x 1) = 2Im(31)

Look at interactive Pdf M




“Representation analysis” the method of Bertaut

GO_kP GE

Table 1
Trreducible representations of R3¢-Cy, k = 0 and R3m-Cl.k =0 and k = [1 34

3 24 3

\ ! or or or

Symmetry operations 1 3 Ed m m3 m3*
Representations

I Ay n 1 1 1 1 1 1

r, A n 1 1 1 -1 -1 -1

s ) ) e E

. . BASIS VECTOR COMPONENTS FOR EAC OBTAINED BY CLASSICAL PROJECTION:
'A set of matrices, each corresponding to a single (NOTE THAT THESE ARE WITH RESPEC ACE GROUP AXES)

operation in a group, that can be combined amongst IR # 1, BASIS VECTOR: # 1 (Al E NUMBER:# 1)

themselves in a manner parallel to the group ol S T T T

dements”

(Cotton, Chemical applications of group theory) IR #3, BASIS VECTOR: # 1 (ABSOLUTE NUMGER:# 2)
F [ 0 6) + i¢ 0 [ ))
atoM 2: (0 0 8 + iC ¢ o 0

Projection of vibrational modes o G

. N . Atom 2: ( 0 0
(basis vectors) associated with the |, , ;, sucie veon: & 2 Gumsoure egeie 4)

.

¢

1 (ABSOLUTE NUMBER:# 3)
0) + i(-1.732-3.464 [}
(IR 4 0 o 0)

Irreducible Representations (IRs) Hon SRR TR B -1

BASTS VECTOR: 3 (ABSOLUTE NUMBER:# 5)
¢ [ @ o+ iC 0 0

¢ -3 -3 0) + 1(1.732-1.732 0)

R 45, BASIS VECTOR: # 4 (ABSOLUTE NMB
ATom 11 ¢ 3 0 @+ 1 1.73 @)
aom 2t ¢ 0 o 0y + ¢ 0)

Landau theory - second-order phase transitions

* The minimum in free energy defines the equilibrium state

<8Q Qo T\ o Qo

* Free energy varies continuously as a function of temperature

— Symmetry change is not continuous

* Assume that the free energy can be expanded as a function of an order
parameter with temperature-dependent coefficients

- Order parameter could be polarisation, strain, mixing coefficients

— The minima also change as a function of temperature
1
2 3 4
G:Go+§rQ +dQ” +uQ
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Landau (1937), Landau and Lifshitz (1950):

All symmetry does is classify degrees of freedom

¢ ‘Rules’ have to come from somewhere else

* Landau theory is historically the most important
framework

¢ Itis THE reference

- Many of its rules were originally designed for
prediction

* But your H may appear to break them (a
bit, a lot or completely). The transition may
not be as simple as you think

+ Given that warning, let’s have a look...

J. Manuel Perez-Mato RAMS 5

Landau theory

For T > T,
r(T) >0

For T < T,
r(T) <0

* The condition G(-Q) = G(Q) requires that the power
series only has even powers of Q

1
* We will truncate the power series as soon as practically G =G+ 5rQQ + dQ3 + ’U,Q4
possible

* “Representation analysis” of free-energy invariants, 60

groups, subgroups




Landau theory

* The symmetry group of the magnetic structure should a subgroup of the space
group before the transition

* A transition should involve a single IR, that of the Go

* When there are more than one arms to the star, the symmetry operations
are divided amongst the arms (cosets)

* Bringing together these symmetry-related operations recovers those of Go

* So, the rotationally related IRs of G{k} come together, they define a
collection of matrices that involve all the operations of Go.

* Itis this IR that Landau says guides the transition, it could couple IRs
within the little group Gk or those for different k-vectors

* Bertaut broke away from this Go -based description to focus on Gi. A
single IR of Gy is a good starting point, but there may be coupling
from IRs with isotropy groups with the same MSG/MPG or when

viewed from Go
61

Landau (1937), Landau and Lifshitz (1950):

Order parameter and basis vector combinations
E kE  k —2mik-t
m; = ZCU Wy, e T
v,k

* Let's rephrase - symmetry groups based on the mixing coefficients can be defined
according to which symmetry operations have IR matrices that leave a vector in IR space
invariant, i.e. d(h)7j = 7j

* During the transition, symmetry
breaks. The symmetry group changes
from G to a subgroup H.

* H could be the group of the IR, or a
subgroup of it

G—H

Order parameter
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Landau theory

* Rewrite the free energy in terms of polynomial of degree n that is invariant
under Go using the order parameter; so

G=Gy+ %rQQ +dQ? 4+ uQ?

becomes
G = Z Po{iin}
n
e.g. where or etc, are valid order
N parameters
_ o S o
-\ =10
— E k 1k —2mik-t
m] - Cl/ wz,y € I
v,k 62

Landau (1937), Landau and Lifshitz (1950):

MSGs, MPGs and couplings between IRs

* Foragiven n,fora given IR of Gy we can list the symmetry operations that leave it
invariant or reverse it. These form the MPGs or the MSGs of the relevant basis vector

combination o C1
n C,

In the language of Landau {n} are order parameters. More generally, let’s call them
'stationary vectors’. They define high symmetry basis vector combinations within an
IR's symmetry space (cf position vectors and special positions in Bz)

The set of important {n} defines a unique collection of MPGs or MSGs within an IR

 If two representations contain the some of the same image matrices, then the
same MPGs and MSGs can occur in the different IRs. (The same symmetry
group may span IRs), even if the degrees of freedom are orthogonal!

If this happens, coupling can occur between them. One IR may drive the transition
(primary) and another may be induced by it through coupling. This is a secondary
order parameter. They are not expected to have the same temperature dependence,

but will have the same critical temperature N N
/éfo% dr = <¢1\0\¢0> 64

Landau (1937), Landau and Lifshitz (1950):




Looking back at some of the complexity - IR Dimension
* Remember IRs can be of dimension | to 6.

* IRs of order | :
* Matrix representatives all have the elements | and -1

* If the translations match, can be used directly to construct magnetic space groups (take
primed and unprimed operations)

* IRs of order 2+ :

Matrices are irreducible, i.e. cannot be reduced further

Their general symmetry space does not correspond to a single magnetic space group

The high symmetry structures are possible within them

Think of projection as superposition of components of waves with different phases (be
they real or conglex) from the IR components belorélging to the different symmetrz
operations g in Gk (forms a space group). Use to define a group Gy, .k}, and then
make magnetic space groups, but also magnetic point groups.

Table 1
frreducible representations of R3¢~Cly, k = 0 and RIm—Cly, k=0 and k= (1 $ 4]
¢ 2] 3
\ t or or or

Symmetry operations 1 3 ? m m3 m3*
Representations

X v 1 1 1 1 1 1
o A on 1 1 1 -1 -1 -1

Landau Theory- When it appears not to work it
might still be useful :-)

* Irreducible representations role is to classify symmetry types

* The observation of several IRs involved in a magnetic transition (structure)
gives you information about the energy drives

* The difference between weakly and strongly first order

+@+@+‘

Table 1 ﬁ
_ Irreducible representations of R3¢~C§y., k = 0 and R3Im—C3y k= 0and k = (1 4] . ! I I
e =] o3
\ . or

A newer
refinement A . . v ,
Ty ~1

Ay k53 1 1 1 -1 -1
T E ™ 1. e . & AN A L.
strategy ’ S O A S I G B (O MOl N
combining ideas| | e s s gy oo

UTE NUMBER:# 1)
ic ]

or or
Symmetry operations ] 3 3# m m3 m3

¢ 0 &) + 2
o 0 -6) + A( o o o)

. BASIS VECTOR: # 1 (ABSOLUTE NUMEER:# 2)
¢ ] 0 8 + i( 0

¢ 1 1 8 + iC o o 0

Projection of basis

| BASIS VECTOR: # 1 (ABSOLUTE NMEER:# 3) R
vectors R A R N B Refine with mixing
EAEIS 4ESYG£; G 2 gﬁﬁs?m%; hmesb.t na 0 COefﬁCieﬂtS fO“OW\ng
R IR | S FRE I
e 3 amsolure nsesie 5) symmetry types, high
28 st 8 symmetry linear combinations
AR T i P Characterise resulting
[ A R 3

structure with magnetic point

) Qspace) groups defined by n.
Basis vector
symmetry
spaces: kernels
and epikernels

— — — — e
Magnetic point 1L =1 il = M= M= = (C’A’)
groups Gik, - i 72 s Gi 66

space group




Refining magnetic structures with SARAh and
SARAh-Refine - ideas

* Philosophies and pathways
* Basis vectors give allowed directions of spins
* Commensurate, incommensurate k - no difference in process
*  Work within Gk and begin from “a single IR”

* Definition of IR within Bertaut’s theory is within Gi. In Landau theory it
begins in Go. Go can be constructed from Gi

* Refine using basis vectors and mixing coefficients. *Use isotropy/ stabilizer groups/
epikernals and magnetic point groups*

* FullGroups, multi k - coming soon
» Continuous phase transitions ? Landau
»  Couplings - food for thought
- Let the data tell you what “a single IR” means

* My ‘building-up’ principle

= Goal : Using necessity - Ockham’s razor - and take care of the unknown

Things to keep in mind

* If you need to couple IRs

— Do it consciously - think about it (does this make sense? How does it work with
Landau theory? What can cause it? Look at the various rules)

e Are there things that you cannot see?

— e.g. multi k structures.Very cool and we know little about them (because we rarely
think about them)

* Building up magnetic structures
— The Fourier sum can build any magnetic structure. Just keep adding what you need.

k_ k ok —2mik-t
mj = E Cy Uy e
vk

Things to keep in mind

e k-vectors in centred cells need to be handled with care, e.g. k=(100) in BCC
— When in doubt, convert to primitive and transform to centred setting
— Helpful information, e.g. ferromagnetism required k=000

* Representational analysis calculations do not get rid of degrees-of-freedom
— Symmetry is about classifying the 3n components (n = num atoms in prim cell)
— Deal with only a few variables at a time. More models, each with fewer variables

— Stationary vectors/ epikernels mean even fewer at a time (only a couple may be
active)

* Basis vectors can involve complex numbers
— Enjoy what this can make as a structure

— The space that they define shows you what is possible within your unknown
Hamiltonian. Think of the physics you are looking for

* Relate your analysis to other information

— Don't use diffraction in isolation

Add what you need, when you need it ...
- Building-up the magnetic structure

¢ Ockham’s razor
— pluralitas non est ponenda sine necessitate

("plurality should not be posited without necessity")

("Don't use variables unless you need to")

— Work out what the necessity is
— Think about why!
— There lies the fun...
— There lies the physics




Refining magnetic structures with SARAh and
SARAh-Refine - practicalities
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SARAhO- How it does it

* GSAS implementation (k vector X)
— The start of direct basis vector refinements (refine Cj) for magnetic structures

— SARANh controls all aspects of symmetry and the moment orientations, the
rest is normal GSAS

— PI phase in GSAS (avoid red/ black, allow complex symmetries). Full magnetic cell
— Lock down non-magnetic variables

— Set GSAS for 2-3 LS cycles (i.e. converge), normal user control

— SARANh edits .exp file to insert all atom positions

— User selects symmetry type (representation, basis vectors)

— SARAh matches atoms being refined, replaces moments, launches GENLES

— RMC/Simulated Annealing refinement - X2 maps against C;

— Clone refinements to explore uniqueness of the refined solution
75

SARAhA- what it does

* SARAh = Simulated Annealing and Representational Analysis

— Perform symmetry analysis of possible magnetic structures using
Representational (and Corepresentational Theory)

* Information for analysing data and understanding phase
transitions

— Clip-on front-end to facilitate reverse Monte Carlo refinement of
structures in GSAS using basis vectors and mixing coefficients

* Symmetry-free simulated annealing is not normally enough
* Simulated annealing is not normally required

— Clip-on front-end for FullProf and TOPAS using basis vectors and
mixing coefficients
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SARAh- How it does it

* Fullprof implementation (k vectorv)
— External front end to prepare and edit the pcr file, write fst file
— Not command line, simplest user choices. Buttons, scroll bars, etc
* Help user as much as possible™*
* Simplicity™*
* Unique k-search engine

Main technical difficulties are with:

* Format in FullProf, its ongoing development !! Complex basis vectors but real or
imaginary mixing coefficients. ..

* Definition of the magnetic structure- Fullprof over-defines the structure, better
to generate each moment | time

76




SARAh- How it does it

* TOPAS implementation (k vector X)
— External front end to prepare and edit the ins file,
— Not command line, simplest user choices. Buttons, scroll bars, etc

ok

* Help user as much as possible
* Simplicity™”
— Main technical difficulties are with:

* No - vector. Commensurate structures only.

* Format may need fixes - | don't have TOPAS 5,6 or 7 ;-)
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SARAh -

- Where to begin?

* SARAh Al : Magnetic structure determination with SARAh - Introductions

and FullProf

* SARAh A2 : Magnetic structure determination with SARAh - Introductions
and FullProf

* SARAh B : Magnetic structure determination with SARAh - Introductions
and GSAS

And answering 3 questions ...

20+ years on, time for a refresh? Web version (Google : fermat + sarah)
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