Magnetic Representational Analysis
with SARAh and SARAh-Refine

Andrew S.Wills
L] Clierrsiiiy

Why use symmetry?

* Electronic structures are complex
* We rarely have as much information about them as we would like

— Experimentalists typically deal with under-defined problems
(there are too many possible solutions)

— Useful to introduce a grand simplifying structure (makes
rules, classes of behaviour, and thus to simplify, clarify and
reveal...)

Why use symmetry?

* Electronic structures are complex
* We rarely have as much information about them as we would like

— Experimentalists typically deal with under-defined problems
(there are too many possible solutions)

— We don’t know the Hamiltonian !

— Useful to introduce a grand simplifying structure (makes
rules, classes of behaviour, and thus to simplify, clarify and
reveal...)

— The difference between ingredients and menus...

Group theory (and magnetism)

* Frameworks and method for simplifying analysis of a problem in systems
possessing some degree of symmetry.

- Works with Landau theory (more later)
* What is allowed vs. what is not allowed

— And what might be allowed iff...

The ‘iff’ opens up the questions
— Couplings /¢TO¢0 dr = <(/)1|O|¢0>
* History (
— Space groups (black and white,‘'magnetic’, coloured, spin space groups, superspace groups)
— Representation theory
— ‘The method of Bertaut’

— Broader framework (representations and corepresentations)




“Representation analysis of magnetic T
structures” - the method of Bertaut

+  E.F. Bertaut, Acta Cryst A24,217
(1968)

Acta Cryst. (1968). A24, 217
Representation Analysis of Magnetic Structures

By E.F.BERTAUT

Laboratoire d*Electrostatique et de Physique du Métal,C.N.R.S., B.P. 319 et
Laboratoire de Diffraction Neutronique, C.E.N.G., B.P. 269, Grenoble 38, France

Applied k-vector (focus)

— Showed magnetic space groups

(’\ »j could be constructed from

: character tables of the
- | irreducible representations (of
Gi)

— Used projection method to
generate basis functions
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Basis vectors and k-vectors

* ¥is complex and k is incommensurate @
— Leads to m being complex, so need to make real moments % O
— The atomic vector for an atom in the nth cell related to that in the ze @

translation t is given by @

—k Lk —2mik-ti; k k \* _—2mi(—k)-4
mj S CV i, € & +CI/ (zl)zu) g ( )

— Substitution and expansion of the exponential leads to @
m; = 2Re(1/—)‘f‘,,) [cos(—27rl—s;- f;,)] - 2Im(1/—12°:,,) [sin(—21 L &0

— Where the second term is non-zero.
— If the real and imaginary parts are not parallel = circular or elliptical h
=Requires non parallel BVs

("Note SARAh, works with atoms in the zeroth unit cell) j) elliptical helix

Bertaut’s method

* Fundamental propésition

— The eigenfunctions of an electrons with a periodic Hamiltonian are Bloch
waves with the form:

- 72 k 7k _—2mik-;
g = Cl/ i,V € -
v,k

—Magnetic structures are eigenfunctions of the spin-dependent electronic
Hamiltonian and have the same form

—If we expand the exponential, we see that it is made up of a Real cosine
part and an Imaginary sine part

m; = Z CE \I_}FV [cos(—27rl; 1) + i sin(—27k - f)}
v,k

=This formalism is very general and elegantly describes simple and
exotic structures, such as sinusoidal and helical structures. You can
read a structure from its basis vectors and the k vector

e R
* A purely imaginary basis vector is as real as a purely real one...
1 = (1,0,0);92 = (,0,0)
o = it

— They are equivalent

* The linear combination of basis vectors can involve complex numbers
(phase relationships)

J1 + JT = 2R€(@51) .
(=i x 1) + (i x P7) = 2Im(h1)

Look at interactive Pdf
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Magnetic structures - built from 2 length scales Which
moments

are related
by
symmetry?

|I. basis vectors
576

Variables
(done badly)
Down to
144, ..

— Build up symmetry within primitive unit cell, Go
— Z E 7k —2mik-i;;
g = CI/ i,V e !

v,k

2. k-vector
— Propagate (a component of) the magnetic structure through the
crystal to moments related by lattice translation, i.e. a primitive
lattice vector

48 or |2?

16 0.0.0

— Define translational periodicity and corresponding orientation
dependence

701




Atomic moments in a crystalline environment
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Landau theory - second-order phase transitions

¢ The minimum in free energy defines the equilibrium state

2
(%), - (&),
Qo Qo
* Free energy varies continuously as a function of temperature

— Symmetry change is not continuous

* Assume that the free energy can be expanded as a function of an order
parameter with temperature-dependent coefficients

- Order parameter could be polarisation, strain, mixing coefficients

— The minima also change as a function of temperature
1
2 3 4
G:Go+§rQ +dQ” +uQ

59
Landau (1937), Landau and Lifshitz (1950):

All symmetry does is classify degrees of freedom

¢ ‘Rules’ have to come from somewhere else

* Landau theory is historically the most important
framework

¢ Itis THE reference

- Many of its rules were originally designed for
prediction

* But your H may appear to break them (a
bit, a lot or completely). The transition may
not be as simple as you think

+ Given that warning, let’s have a look...

J. Manuel Perez-Mato RAMS 5

Landau theory

e 705 0T,

! T<T .
¢ r(T) >0

For T < T,
r(T) <0

* The condition G(-Q) = G(Q) requires that the power
series only has even powers of Q

1
* We will truncate the power series as soon as practically G =G+ 5rQQ dl dQ3 ot ’U,Q4
possible

* “Representation analysis” of free-energy invariants, 60
groups, subgroups




Landau theory

For T' > T,
r(T) >0

For T' < T,
r(T) <0

Assuming 7 is linear in T — Use (T — T),

1
where T, is the critical temperature | G = Gy + ir(T —T,)Q% + u@*

and take the other coefficients as temperature independent. X

Landau theory - some specifics for us

The reference structure is the space group Go before the magnetic order

¢ The Hamiltonian needs to be invariant under Go

* The resulting symmetry group of the structure is a subgroup of Go. Symmetry

group means that we are considering real moments or real energy terms
under symmetry operations

* Order parameters characterise the transition : its strength (modulus) and the
symmetry that remains in the phase after the ordering

¢ The mixing coefficients are the refined parameters of a magnetic structure

- They are also valid order parameters for Landau theory

e E k ..k —2mik-t;;
mj = CV wi,u € 2
v,k

L _ (G
T] - C X
Landau (1937), Landau and Lifshitz (1950): 2

Landau theory

¢ The symmetry group of the magnetic structure should a subgroup of the space
group before the transition

e A transition should involve a single IR, that of the Go

* When there are more than one arms to the star, the symmetry operations
are divided amongst the arms (cosets)

* Bringing together these symmetry-related operations recovers those of Go

* So, the rotationally related IRs of G{k} come together, they define a
collection of matrices that involve all the operations of Go.

* Itis this IR that Landau says guides the transition, it could couple IRs
within the little group Gk or those for different k-vectors

* Bertaut broke away from this Go -based description to focus on Gi. A
single IR of Gy is a good starting point, but there may be coupling

from IRs with isotropy groups with the same MSG/MPG or when
viewed from Go
61

Landau (1937), Landau and Lifshitz (1950):

Landau theory

* Rewrite the free energy in terms of polynomial of degree n that is invariant
under Go using the order parameter; so

1
G=Go+ §rQ2 o G e @l

becomes
G = Z P n{ﬁk}
n
etc, are valid order
e.g. Where or
parameters
= Cl - Cl
n O, n 0
e § k .k —2mik-t;;
mj T Cu 1,V € i
v,k 62

Landau (1937), Landau and Lifshitz (1950):




Landau theory

* In IR space we can describe the action of the symmetry operations on the

order parameter, e.g. C
— 1
’r] =
Cy

* This is done by considering the action of the IR matrix of a given symmetry
operation g, define this as

gﬁ: DV(Q)ﬁ

Simplify things by looking at the unique matrices of an IR, these form the
image of the IR,

Look at which operates leave N invariant and which change it to symmetry
related vectors (compare this with making the star of k)

Use this set of {n} to calculate the polynomial of invariants, as F must be
invariant under these operations. The result has to be consistent (invariant)
under all these operations simultaneously, e.g.

F=r(ni+n5 +n3) +vmnans + ui(nf + 13 +n3)
+uz(ning +ning +nan3) *

MSGs, MPGs and couplings between IRs

For a given n, for a given IR of G« we can list the symmetry operations that leave it
invariant or reverse it. These form the MPGs or the MSGs of the relevant basis vector

combination o Cl
n @

* In the language of Landau {n} are order parameters. More generally, let's call them
‘stationary vectors’. They define high symmetry basis vector combinations within an
IR's symmetry space (cf position vectors and special positions in Bz)

* The set of important {n} defines a unique collection of MPGs or MSGs within an IR
* If two representations contain the some of the same image matrices, then the

same MPGs and MSGs can occur in the different IRs. (The same symmetry
group may span IRs), even if the degrees of freedom are orthogonal!

If this happens, coupling can occur between them. One IR may drive the transition
(primary) and another may be induced by it through coupling. This is a secondary
order parameter. They are not expected to have the same temperature dependence,

but will have the same critical temperature N R
[o100 4= (a1000) o,

Landau (1937), Landau and Lifshitz (1950):

Order parameter and basis vector combinations
Kk k ,k ,—2mik-t
m; = ZCV Y, e "

v,k
* Let's rephrase - symmetry groups based on the mixing coefficients can be defined

according to which symmetry operations have IR matrices that leave a vector in IR space
invariant,i.e. d(h)ij = 17

* During the transition, symmetry
breaks. The symmetry group changes
from G to a subgroup H.

* H could be the group of the IR, or a
subgroup of it

G—H

Order parameter
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Looking back at some of the complexity - IR Dimension
* Remember IRs can be of dimension | to 6.

* IRs of order | :
» Matrix representatives all have the elements | and -1

* If the translations match, can be used directly to construct magnetic space groups (take
primed and unprimed operations)

¢ IRs of order 2+ :

Matrices are irreducible, i.e. cannot be reduced further

Their general symmetry space does not correspond to a single magnetic space group

The high symmetry structures are possible within them

Think of projection as superposition of components of waves with different phases (be
they real or complex) from the IR components belonging to the different symmetr?;
operations g in Gk (forms a space group). Use to define a group Gy, -k}, and then
make magnetic space groups, but also magnetic point groups.

Table |
Irreducible representations of R3c~Cly, k = 0 and R3Im-C},, k= 0and k= [} 1]

¢ o3 e3?
o

2
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Table 1
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structure with magnetic point

. Qspace} groups defined by n.
Basis vector
symmetry
spaces: kernels
and epikernels
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@ 3 i
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Magnetic point
groups G, -, Gy,
space group

Landau Theory- When it appears not to work it
might still be useful :-)

* Irreducible representations role is to classify symmetry types

* The observation of several [Rs involved in a magnetic transition (structure)
gives you information about the energy drives

* The difference between weakly and strongly first order

How can magnetic structures be described

o Workwithm m  m

jo M M (the components parallel to the crystal axes)

— Form real moments from P and P* (can involve combining basis vectors from same
IR or IRs related by complex conjugation)

— Basis vectors are symmetry adapted functions - they are symmetry adapted to the
system you are dealing with, and will allow complex symmetries. Isotropy groups
are contained within representation theory

— Choice to work with the simple repetition of a unit cell (magnetic space group -
MSG, superspace group), or a propagation vector and the original unit ce

— The description of a magnetic structure use a MSG is not always the same
as using a single IR of G.

* Coupling and/or high symmetry structures are possible
= Equivalent descriptions can be constructed
— Which is best ? Beauty is in the eye of the beholder

— The elegance description of a structure depends on what you want and your
preferred point of reference. Couplings are treated differently and need care




