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a) ferromagnetic   c) ferrimagnetic

  h) sine or cosine

 i) circular helix  j) elliptical helix

b) antiferromagnetic d) triangular e) canted f) umbrella
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Understanding of what a magnetic structure is

• Information is lost depending on the technique used

– Go through alternative models - perhaps more than one model 
will fit your data. If so, think about hidden symmetries

– Consider what you cannot see and the subtle points of a 
magnetic structure

– Perhaps you need another experiment to characterise things 
that you cannot see and to complete the study
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But what about unseen complexities?

• Types of domain (characterised by the types of symmetry 
elements lost during the magnetic ordering)

But what about unseen complexities?
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Translational domains (translational symmetry)

Pi domains (spin reversal)

Orientational (K, S) domains (rotational symmetry)

Chiral domains Centrosymmetry



Slip and translational domains
– Regions in which all the moment directions in one domain are 

related to another by translational symmetry
– The intensity and the polarisation scattered by the two 

domains are identical

Apply translation t

π- domains

– Regions in which all the moment directions in one domain are 
reversed with respect to those in the other

– Ferromagnetic domains provide a simple example
– The intensity and the polarisation scattered by the two 

domains are identical

k domains

• Arise if Gk<>G0

– Operating with the paramagnetic symmetry elements on k 
generates a set of inequivalent vectors which form the star of 
k, e.g. k1=k1E, k2=k1R2, k3=k1R3, k4=k1R4...

– e.g. FCC lattice
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k domains

– Each vector in the star generates a different configuration 
domain

– Each configuration domain gives a completely separate set of 
magnetic reflections at positions ±k from the reciprocal lattice 
nodes

– Each set of reflections belongs to a distinct region of the crystal, 
hence effectively to a single state
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k domains

– Each vector in the star generates a different configuration 
domain

– Each configuration domain gives a completely separate set of 
magnetic reflections at positions ±k from the reciprocal lattice 
nodes

– Each set of reflections belongs to a distinct region of the crystal, 
hence effectively to a single state
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Orientational domains (S-domains)
– Occurs when the symmetry of the magnetic structure is less than that of the 

crystal space group
– S domains are related by the symmetry elements that are lost (k does not 

change)
– The relationship between m and k is the same for all s domains
– Distinguish by single crystal diffraction, not powder diffraction

a
b

c

m||a m||b m||c×
Chiral domains • Occurs when

• Paramagnetic space group is 
centrosymmetric but the  magnetic 
structure is not

• The magnetic moments on 
centrosymmetrically related sites are 
not parallel

• Incommensurate structures
• When 2k is not a reciprocal 

lattice vector
• In this case the two chirality 

domains correspond to +k and 
-k. They give contributions at 
(hkl) ± k

– Within the Fourier description of magnetic structures, each 
single domain follows

– In the absence of unbalancing constraints (applied magnetic or 
electric  field, pressure, etc) these will have the same energy

– Leads to questions
•are there S-domains
•multi-k or k-domain?

Unseen complexities
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• Example of diffraction 
pattern (structure) with 2k 
vectors: 

• 2k structure 

or  

• 2 domains?

k-domains vs multi k
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• Example of diffraction pattern 
(structure) with 2k vectors:

– Both will contribute to the 
same reflections

– Cannot distinguish by simple 
diffraction

•2k structure
•2 k-domains
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k-domains vs multi k
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k-domains vs multi k
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• External constraint, e.g.

– Applied magnetic field
– Pressure

• Leads to

– Unbalancing domains
– Domain repopulation 

• Multi-k and k domains structures, 
S-domain structures respond 
differently 

⇥k1 + ⇥k2

• Single crystal diffraction
– Possible to apply constraint to 

•differentiate k domains from multi-k
•explore S-domains

Diffraction- Single crystal and powder
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vs.

vs.

• Powder diffraction
– (diffraction pattern projected onto a line)
– Cannot even see k-domains/multi-k
– But you can always consider the 

possibilities and effects such as single-ion 
anisotropy...



La2O2Fe2OSe2 - Representational Analysis

!16
D.G. Free and J.S.O. Evans Phys. Rev. B 81, 214433 ︎2010︎, 
E. McCabe, C. Stock, E.F. Rodriguez et al., Phys. Rev. B  
89, 100402 (2014)  

• Related to the iron-based superconductors, but has 
magnetic order

• Want to understand drives and the competition 
between magnetic order and superconductivity

• Antiferromagnetic order below ~ 90 K
• k1=(½, 0 ½) and k2=(0 ½ ½) with respect to the 

crystallographic space group I4/mmm 
– In 1-k structure, 2 orbits. Need : Γ2 (m||a) on Fe1 

and Γ3 (m||a) on the Fe2 site. Collinear
– 2 k structure, just Γ3 from Fe2 and think about 

why it is 2-k

• Related to the iron-based superconductors, but has 
magnetic order

• Want to understand drives and the competition 
between magnetic order and superconductivity

• Antiferromagnetic order below ~ 90 K
• k1=(½, 0 ½) and k2=(0 ½ ½) with respect to the 

crystallographic space group I4/mmm 
– In 1-k structure, 2 orbits. Need : Γ2 (m||a) on Fe1 

and Γ3 (m||a) on the Fe2 site. Collinear
– 2 k structure, just Γ3 from Fe2 and think about 

why it is 2-k
• Care. Both components have the 

same energy. Not possible to 
make 2-k structure with 2nd 
order terms

• Need Ising anisotropy with higher 
order anisotropic exchange terms!17
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La2O2Fe2OSe2 - Representational Analysis

So, what are magnetic symmetries?
Parts of the puzzle and a language to frame its possibilities:

– Space group G0

– k-vector, k and its space group, Gk

– IRs, Γ and associated basis vectors, ψ
– Isotropy vector, η and associated subgroup, Gη
– Magnetic space group, MSG - a convenient classification of 

magnetic symmetry; not always the same as IR / basis vector 
symmetry

– Magnetic point group, MPG - a convenient underused classification
– Combine symmetry types with Landau theory to make phase diagram 

– Is one of the classifications preferable? The answer depends on what 
one wants to use a classification for

• Subtle physical properties will come from a subtle 
electronic properties and subtle couplings. Expect a 
subtle magnetic structure 

• The wolf in sheep clothing

Magnetic (space groups) or representation theory 
- Just a question of priorities and needs? 

!19


