
ORNL is managed by UT-Battelle, LLC for the US Department of Energy

Experimental aspects of magnetic 
structure determination and 
magnetic space groups

Stuart Calder
Instrument Scientist on HB-2A 
Powder Diffractometer, HFIR

Neutron Scattering Division
Oak Ridge National Laboratory



2 Experimental aspects of magnetic structure determination and magnetic space groups

Overview

• Recap concepts for Magnetic Structures

• Magnetic Space Group approach

• Neutron Scattering to determine magnetic structures
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Lots of references for neutron scattering
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References on magnetic symmetry

• Juan Rodríguez-Carvajala, JacquesVillain, “Magnetic structures” https://doi.org/10.1016/j.crhy.2019.07.004

• J. Rodríguez-Carvajal and F. Bourée, “Symmetry and magnetic structures” DOI: 10.1051/epjconf/20122200010

• J M Perez-Mato, J L Ribeiro, V Petricek and M I Aroyo “Magnetic superspace groups and symmetry constraints 
in incommensurate magnetic phases”. doi:10.1088/0953-8984/24/16/163201

• A. Wills, “Magnetic structures and their determination using group theory” https://doi.org/10.1051/jp4:2001906

• Yurii A Izyumov, “Neutron-diffraction studies of magnetic structures of crystals” 
https://doi.org/10.1070/PU1980v023n07ABEH005115

• J.M. Perez-Mato, S.V. Gallego, E.S. Tasci, L. Elcoro, G. de la Flor, and M.I. Aroyo, “Symmetry-Based 
Computational Tools for Magnetic Crystallography” 10.1146/annurev-matsci-070214-021008

• Garlea and Chakoumakos, “Magnetic Structures” chapter in Experimental 

Methods in the Physical Sciences vol. 48, p.203-290 Academic Press, 2016

https://doi.org/10.1016/j.crhy.2019.07.004
https://doi.org/10.1051/jp4:2001906
https://doi.org/10.1070/PU1980v023n07ABEH005115
https://www.sciencedirect.com/science/journal/10794042
https://www.sciencedirect.com/science/journal/10794042
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Neutron Scattering and Magnetism

• ~500 BC: Ferromagnetism documented 

• 1932 Neel proposes antiferromagnetism

• 1943: First neutron experiments at ORNL

• 1951: Antiferromagnetism measured in 
MnO and Ferrimagnetism in Fe3O4 at 
ORNL by Shull and Wollan.

• 1950-60: Shubnikov and Bertaut develop 
methods for magnetic structure 
description.

Sinan, 
~200 BC

Neutron scattering remains 
the best tool for determining 
magnetic structures

Low Temperature

High Temperature
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Magnetic order: Magnetic moment and interactions

m=gJJ (rare earths)
m=gsS (transition metals)
Ni2+ has a localized magnetic 
moment of 2µB

Moment + Crystal + Interaction = Magnetic Structure

a

b

a

2b

+ +
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Magnetic structure: Ordered spins in a crystalline lattice

Paramagnetic state 
(no order)

• Time-reversal is a valid symmetry operator for paramagnetic phase, but is broken in the ordered phase

Jij

Eij=-JijSi.Sj

Ferromagnetic order Antiferromagnetic order Ferrimagnetic order

Curie-Weiss:
Χ= C/(T-θCW)

High temperature, J< kBT Low temperature, J > kBT

Paramagnetism Long range magnetic order
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Magnetic structures

• Lots of types (and mixtures of these types). 
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Magnetic propagation vector: k-vector

k=(0,0),  FM k=(0,0),  AFM k=(½,0),  AFM

a

b

Crystal unit cell

k=(¼,0),  AFM

• k-vector describes the relation between the nuclear and magnetic unit cells

k=(½, ½),  AFM

Incommensurate 
spin density 
wave structure 
with
k1=(δ,0)

Incommensurate 
Helical structure 
with
k1=(δ,0)

Atom

Spin

Magnetic unit cell
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General magnetic structure description with k-vectors

• Can state only the spins in the 0th crystallographic unit cell and the 
k-vector describes how the spins are related in all other unit cells.

• All magnetic ordering is periodic, this can be expressed in the 
Fourier series:

ml

m0

Correlation of the spin mj on 
atom j within unit cell l to m0 in 
the 0th unit cell translated by R

mj=Σk Sj
k e-2πik.R

spin at the atomic site j in 

some unit cell that is 

related to the 0th cell (G0) 

by a translation R.

Sj (Basis vector): spin in the 0th cell.

k-vector

Lattice 

translation 

to unit cell
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What are the ways to describe magnetic structures?

• Magnetic structures can get complicated.

• Often dealing with limited data.

• Want a systematic way to simplify, determine and describe magnetic structures

→ Use symmetry
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What are the ways to describe magnetic structures?

Representational analysis (IRs)

– Finds basis vectors in k-vector approach

– Equally applicable to simple 
commensurate and complex 
incommensurate magnetism

– Separates magnetic/non-magnetic 
descriptions

Two main approaches

– Both based on symmetry to help constrain your model

– End results identical

– Both methods have advantages and allow checks of magnetic structure

– GSAS-II uses Magnetic Space Groups

Magnetic Space Groups

– Extension of crystallographic space 
groups to include spin 

– Describes symmetry of magnetic/non-
magnetic atoms so can provide insights

– Incommensurate only recently added 
through supersymmetry description (not 
currently in GSAS-II)
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Magnetic space groups (Shubnikov groups)

1929: Heesch, introduces the antiidentity operation properties: u2 = 1, ut = tu for all t∈T

– aka time reversal group = {1,1’}          (Z. Krist. 71, 95)

1945: Shubnikov re-introduces concept of bi-colour point groups 

1951: Shubnikov describes and illustrates all of the bicolor point groups (→ Shubnikov groups)

1955: Belov, Neronova, Smirnova (BNS) - first complete listing of the Shubnikov groups (Sov. Phys. Crys 1, 487-488)

1957: Zamorzaev, group theoretical derivation of Shubnikov groups (Kristallografiya2, 15 (Sov. Phys. Cryst., 3, 401))

1965: Opechowski and Guccione (OG), first complete derivation and enumeration of the Shubnikov groups

2001: Litvin, corrected Opechowski-Guccione symbols (Acta Cryst. A57, 729-730)

2010: Magnetic Space Groups on computer programs (Stokes and Campbell, BYU)

Future: combine magnetic space group and representational analysis approaches for complete insights

• Natural extension of the crystallographic space group description. 

– But only recently became widely used for magnetism.
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Extend Space Group Approach to include magnetism

• 230 crystallographic space groups:

– Atoms considered as simple points at a certain location, then apply 
symmetry operations.  

• Now add magnetic moments:

– Underlying crystal lattice unchanged, with moments at atomic positions.

– BUT moments are not points, they are vectors … axial vectors.

– Location and orientation need to be considered when applying symmetry 
operations.

• Symmetry operations for crystal space groups not enough to describe 
magnetic structures.
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Magnetic space groups: Spins are axial vectors

• Translation (t) and 2-fold 
rotation are the same for axial 

and polar vectors.

Mirror (m)Mirror (m)

Polar vector Axial vector 

Inversion (-1)

o

Inversion (-1)

o

Polar vector Axial vector 

Polar vector 

Axial vector 

translation (t)

translation (t)

2-fold rotation

• Inversion and mirror (m) are 
different for axial and polar. 
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Magnetic space groups: Time-reversal

• To describe magnetic moments fully a new operator is added

– Time reversal or prime (1’)

– Reverses the final current loop to allow a further set of 
symmetry operations.

• m’ (anti-mirror) behaves like polar vector

• 2’ (anti-rotation) inverts axial vector

• All magnetic structures can be described by a combination of 
primed and unprimed symmetry operators

m’

m’

anti-mirror

1’

→

Time reversal = spin reversal
(changes the sense of the current)

2’
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Building the magnetic space groups

• By associating the 1’ spin operator with a color change (black to white or black to red) the 
magnetic symmetry theory was termed black-white symmetry.

• The original 230 space groups are included as colorless groups and keep their standard labels

– e.g. Pmmm

• A further 230 groups are created by adding the 1’ operator as an extra symmetry operation 

– e.g. Pmmm’

– These correspond to paramagnetic states and are termed grey (each magnetic site is both 
black and white = grey) 

• The remaining 1191 magnetic space groups are created by combining the 1’ operator with one or 
more of the symmetry operation in each of the 230 crystallographic space groups 

– e.g. Pm’mm where the mirror plane perpendicular to a is now an anti-mirror and the other two 
are unchanged.

→ Combining all possibilities leads to 1651 magnetic space groups
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Building the magnetic space groups

Don’t panic → All the hard work is done by Bilbao 
Crystallographic Server or ISOTROPY software suite

Type-I: M=G
no primes 

(single color)

230

Type-II: M=G+G1’
all primed and unprimed 

(paramagnetic or gray groups)

230

Type-III (3a): M=D+(G-D)’ 
half are primed

(black-white groups)

Groups of the “first kind”

D is translationgleiche

D translation is the same as G

674

Type-IV (3b): M=D+(G-D)’ 
half are primed

(black-white groups)

Groups of the “second kind”

D is klassengleiche

D contains antitranslations leading to 

primitive magnetic cells larger than 

primitive crystal cells

517

Total magnetic space groups 1651

Example based on space group P2/m
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Magnetic space groups

• Full description of all Magnetic Space groups 
produced.

– Acta Cryst A57, 729-730 (2001)

– Acta Cryst. (2008). A64, 419-424 (2008)

• Utilized in analysis tools

– Isodistort, Bilbao (GSAS-II), Fullprof, JANA, etc
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Bilbao Crystallographic Server http://www.cryst.ehu.es/

http://www.cryst.ehu.es/
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Bilboa Crystallographic Server: Pyrochlore example

All-in, all-out 
magnetic structure

• Input space group, k-vector to obtain symmetry allowed magnetic structures.

GSAS-II pulls 
allowed magnetic 
space groups 
directly.
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Bilboa Crystallographic Server (http://www.cryst.ehu.es/)
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mCIF file

• Magnetic structures are now standardized.

• Output from refinement software (Fullprof, TOPAS, GSAS-II 
or generated from BCS, ISODISTORT).

• Read by software like cif files.

• Nice visualization with VESTA.
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Magnetic Superspace groups

• Magnetic space group approach has been fully generalized to include 
incommensurate structures beyond the 1651 Shubnikov groups
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Methodology for determining magnetic structures

Magnetic structure

Model:
Magnetic Space groups

Data: 
Neutron diffraction+

M
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e
fin

e
m

e
n
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GSAS-II “If the neutron did not 
exist, it would need to 
be invented”

— Bertram Brockhouse

It is only slightly 
overstating the 

case to say that 
physics is the 

study of 
symmetry.

— Philip Anderson 
(1972)
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Neutron scattering

“If the neutron did not exist, it would need to be invented”
- Bertram Brockhouse
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Why neutrons?

• Wavelength: Comparable to atomic distances (1- 5 Å)

– Strong nuclear interaction with nuclei (nuclear scattering from a point)

• No charge: Can travel through thick samples (cm) and equipment

• Neutron spin (µN): dipole interaction with unpaired electrons → µ= -(L + 2S)µB

– Scattering from magnetic potential produced by e spin or e orbit

– Magnetic scattering of a similar magnitude to nuclear scattering
(often smaller, sometimes larger)

Vm = µn.BMagnetic potential (Vm) 
measured Magnetic field (B) 

produced by unpaired 
electrons (spin and orbital)
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Neutron Scattering Cross section for diffraction

2θ

ki

kf
incident
neutrons

sample

Detector
Scattering 
cross section 
dΩ

Neutron
source

σ =
Rate of neutrons scattered

Φ
Rate of scattering:
[Cross section]

Rate of scattering (dσ) into a 
specific solid angle (dΩ):
[Differential cross section]

dσ

dΩ
=
Rate of neutrons scattered into dΩ

Φ × dΩ

Φ =
Rate of neutrons through area

area
Flux: 106-109 n/cm2/s

Atom → 1 barn =10-24 cm2. 
Effective surface area of nucleus

Units of barn/steradian.

Neutron source produces an 
incident beam of neutrons that 
scatters from a nucleus or unpaired 
electron [sample] into a defined 
cross-section dΩ [detector]. 
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Neutron Diffraction

2θ

ki

kf
incident
neutrons

sample

Detector
Scattering 
cross section 
dΩ

Q

Neutron
source

Scattering triangle:

Elastic scattering: |ki|=|kf|

Q =
4π sin θ

λ
=
2π

𝑑

ki

kf
Q

2θ
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Neutron Diffraction: Ewald sphere and reciprocal space

Fhkl(𝐐) =

𝑗

𝑏𝑗 exp 𝑖𝐆. 𝐫j exp(−𝑊𝑑)

dσ

dΩ
= 𝑁

ℎ𝑘𝑙

|Fhkl(𝐐)|
2δ(𝐐 − 𝐆hkl)

Structure factor

For a crystal, get intensity when Q=G i.e. at allowed (H,K,L) positions

Number of unit 
cells in crystal

Debye-Waller

FM(𝐆) =

𝑗

𝑓𝑗(𝑸)𝐦⏊𝑗 exp (𝑖𝐆. 𝐫j)

Form factor Moment perp.

Nuclear structure factor

Magnetic structure factor

Diffraction in reciprocal space

Q=Ghkl

2θ

ki

kf

(0,0,0)

hkl=(2,1,0)

Ewald 
sphere

a*

b*

Q
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Neutron measurements: Nuclear and Magnetic scattering

• For an unpolarized neutron measurement, there is no interference between the 
nuclear and magnetic scattering.

• Can be considered separately, then combined

– This is done in experiments and analysis! 

– Magnetic Space group approach incorporates both nuclear and magnetic.

dσ

dΩ
(𝑄) = 

dσ

dΩ nuc(𝑄) + 
dσ

dΩ mag(𝑄)
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Magnetic neutron diffraction from a crystal

dσ

dΩmag = (γr0)
2 N(½g f(Q))2e-2W|FM⏊(Q)|

2

Constants

Form factor

Debye-Waller factor
(thermal motion)

Magnetic structure factor:
only perpendicular 
component
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• Magnetic scattering from extended electron cloud → form factor

• F(Q) is the Fourier transform of the spin distribution in real space:    F(Q)=  S(r)e𝑖Q.rd3r

Magnetic form factor, f(Q)

• Analytical expressions are tabulated https://www.ill.eu/sites/ccsl/ffacts/
for j1 (spin only),j2 (orbital),j3 (orbital),etc

Low Temperature

High Temperature

https://www.ill.eu/sites/ccsl/ffacts/
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Magnetic neutron diffraction from a crystal

dσ

dΩmag = (γr0)
2 N(½g f(Q))2e-2W|FM⏊(Q)|

2

Constants

Form factor

Debye-Waller factor
(thermal motion)

Magnetic structure factor:
only perpendicular 
component
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FM⏊(Q): Neutrons Only Measure Moments Perpendicular to Q

• Scattering depends on Fourier transform of Vmagnetic 𝐫 = −𝛍n. 𝐁(𝐫)

• From Maxwell’s equation: ∇. 𝐁(𝐫) = 0

𝑖𝐐. 𝐁(𝐐) = 0Fourier transform →

→ B(Q) is perpendicular to Q to be non-zero M⏊ 𝐐 = 𝐐 × (M × 𝐐)

In experiments 
this can be a 
useful constraint:

Applied 
magnetic field 

drives a spin flop 
transition

Q

kfki

Q

kfki

H>Hc

I(00L) = 0 I(00L) > 0

(001)

Moments parallel to Q Moments perpendicular to Q

ki

kf

Q
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Neutron diffraction data on Powder and Single Crystals

CrPS4

• See “everything”, but averaged. • Definitive details, if accessed in 
experiment.
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Advantages

• Propagation vector 
unambiguously 
determined.

• Low background so 
can see smaller 
moments

• Directional 
dependence of field 
(or strain, etc)

• Domain information

• Smaller mass (~mg)

Disadvantages

• Synthesis can be hard

• Data correction: 
absorption, extinction, 
etc

• Need to search large 
reciprocal space (or 
have large detectors)

• Sample alignment 
considerations.

Advantages

• Often easier synthesis

• See everything

• Propagation vector

• If powders work then 
saved a lot of effort.

• Measurement more 
routine.

Powder                    or                 Single crystal    ?

Disadvantages

• Information is 
averaged and lost.

• Hard to uniquely 
assign some 
propagation vectors.

• No domain info

• Field measurements 
hard to interpret 
quantitatively
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Summary: Determining a magnetic structure with neutron scattering

• Find a good problem and grow sample (powder or crystal)

• Do lots of characterization measurements in laboratory

• Understand background/theory of sample and neutron diffraction

• Apply for beamtime (speak to instrument scientist)

• Sample and experiment preparation are crucial (speak to instrument 
scientist)

• Perform neutron measurement

• Analyze crystal structure (maybe need more measurements)

• Analyze magnetic structure (GSAS-II): Starting model (magnetic symmetry) 
→ compare to data → repeat

• If lucky write up paper

• Otherwise more data → Powder → single crystal → polarization → inelastic 
→ etc
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Extra slides: k-vector
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Magnetic propagation vector: k-vector

• Magnetic and crystallographic unit cells are not 
necessarily the same size. 

• k-vector describes the relation between the 
nuclear and magnetic unit cells

– Determine with neutron diffraction

• Can state just the spins in the 0th crystallographic 
unit cell and the k-vector describes how the spins 
are related in all other unit cells.

b

a

b

2a
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Magnetic propagation vector: k-vector

• Convenient to introduce a propagation vector (k-vector) for magnetic structures: 
Describes the relation between the crystal (nuclear) and magnetic unit cells

• Aim: Can state just the spins in the 0th crystallographic unit cell and the k-vector describes how the spins 
are related in all other unit cells.

k=(0,0),  FM k=(0,0),  AFM k=(½,0),  AFM

a

b

Crystal unit cell
Magnetic unit cell

k=(¼,0),  AFM

• k-vector directly observable with neutron scattering: 

– Magnetic peaks are shifted from the positions of nuclear peaks (τ) by the k-vector value, i.e Qmag= τ + k

– k-vector can be commensurate (e.g. 1/4) or incommensurate (e.g. 1/13)

– Can have multiple k-vectors 
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General magnetic structure description with k-vectors

• Can state only the spins in the 0th crystallographic unit cell and the 
k-vector describes how the spins are related in all other unit cells.

• All magnetic ordering is periodic, this can be expressed in the 
Fourier series:

ml

m0

Correlation of the spin mj on 
atom j within unit cell l to m0 in 
the 0th unit cell translated by R

mj=Σk Sj
k e-2πik.R

spin at the atomic site j in 

some unit cell that is 

related to the 0th cell (G0) 

by a translation R.

Sj (Basis vector): spin in the 0th cell.

k-vector

Lattice 

translation 

to unit cell
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Magnetic propagation vector: k-vector

k=(0,0),  FM k=(0,0),  AFM k=(½,0),  AFM

a

b

Crystal unit cell
Magnetic unit cell

k=(¼,0),  AFM

• Magnetic Space groups: k-vector is directly incorporated in the unit cell.

• Consider a paramagnetic crystal unit cell of a and b and a k-vector.

– If k=(0,0), then the magnetic space group unit cell is unchanged: a and b.

– If k=(1/2,0), then the magnetic space group unit cell is: 2a and b.

– If k=(1/4,0), then the magnetic space group unit cell is: 4a and b.

• Need to keep track of this in refinements, cif/mCIF files, reflections and reporting of results.
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Magnetic propagation vector: k-vector

k=(0,0),  FM k=(0,0),  AFM k=(½,0),  AFM

a

b

Crystal unit cell

k=(¼,0),  AFM

• k-vector describes the relation between the nuclear and magnetic unit cells

k=(½, ½),  AFM

Incommensurate 
spin density 
wave structure 
with
k1=(δ,0)

Incommensurate 
Helical structure 
with
k1=(δ,0)

Atom

Spin

Magnetic unit cell
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Magnetic propagation vector: k-vector

• k-vector directly observable with neutron scattering: 

– Magnetic Bragg peaks are shifted from the positions of nuclear peaks (τ) 
by the k-vector value, i.e Qmag= τ + k

– k-vector can be commensurate (e.g. 1/4) or incommensurate (e.g. 1/13)

– Can have multiple k-vectors
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K-vector in direct and reciprocal space

k=(0,0),  FM

a

b

Direct space Reciprocal space

Crystal unit cell
Magnetic unit cell Nuclear Bragg peak

Magnetic Bragg peak

h

k

Magnetic 
reflections
at (0,0)+k

→ (0,0), (1,0), 
(0,1),(1,1) etc
measured with 
neutron 
scattering
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K-vector in direct and reciprocal space

a

b

Direct space Reciprocal space

Crystal unit cell
Magnetic unit cell Nuclear Bragg peak

Magnetic Bragg peak

h

k

k=(0,0),  AFM
Magnetic 
reflections
at (0,0)+k

→ (0,0), (1,0), 
(0,1),(1,1) etc
measured with 
neutron 
scattering
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K-vector in direct and reciprocal space

a

b

Direct space Reciprocal space

Crystal unit cell
Magnetic unit cell Nuclear Bragg peak

Magnetic Bragg peak

h

k

k=(½,0),  AFM Magnetic 
reflections
at (0,0)+k

→ (0.5,0), 
(1.5,0), (2.5,0), 
etc measured 
with neutron 
scattering



49 Experimental aspects of magnetic structure determination and magnetic space groups

K-vector in direct and reciprocal space

a

b

Direct space Reciprocal space

Crystal unit cell
Magnetic unit cell Nuclear Bragg peak

Magnetic Bragg peak

h

k

k=(½, ½),  AFM Magnetic 
reflections
at (0,0)+k

→

(0.5,0),(0.5,0),(
0.5,0.5) (1.5,0), 
(1.5,1.5), etc
measured with 
neutron 
scattering
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K-vector in direct and reciprocal space

a

b

Direct space Reciprocal space

Crystal unit cell
Magnetic unit cell Nuclear Bragg peak

Magnetic Bragg peak

h

k

k=(¼,0),  AFM Magnetic 
reflections
at (0,0)+k

→

(0.25,0),(0.75,0
),(1.25,0) 
(1.75,0), etc
measured with 
neutron 
scattering
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K-vector in direct and reciprocal space

a

b

Direct space Reciprocal space

Crystal unit cell
Magnetic unit cell Nuclear Bragg peak

Magnetic Bragg peak

h

k

Magnetic 
reflections
at (0,0)+k

→ (δ,0),(1-δ,0) 
(1+δ,0), etc
measured with 
neutron 
scattering

Incommensurate spin 
density wave structure with
k1=(δ,0)
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K-vector in direct and reciprocal space

a

b

Direct space Reciprocal space

Crystal unit cell
Magnetic unit cell Nuclear Bragg peak

Magnetic Bragg peak

h

k

Incommensurate Helical 
structure with
k1=(δ,0) Magnetic 

reflections
at (0,0)+k

→ (δ,0),(1-δ,0) 
(1+δ,0), etc
measured with 
neutron 
scattering
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K-vector in direct and reciprocal space

a

b

Direct space Reciprocal space

Crystal unit cell
Magnetic unit cell Nuclear Bragg peak

Magnetic Bragg peak

h

k

Canted structure with
k1=(½,0),  AFM
k2=(0,0),  FM

Magnetic 
reflections
at (0,0)+k1+k2

→ (0,0),(0.5,0) 
(1,0), (1.5,0), 
etc measured 
with neutron 
scattering
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Multi-k structures: the Skyrmion lattice

• Skyrmion lattice is an example of a multi-k incommensurate magnetic structure

• Lattice of clockwise magnetic whirlpools

k1=(2𝛼,-𝛼,0)

k2=(-𝛼,2𝛼,0)

k3=(-𝛼,-𝛼,0)

Can have k4=(000)

• Here 𝛼=0.11
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Single crystal diffraction

• Magnetic reflections provide 
the k-vector without any 
analysis.

– E.g. if you measure 
reflections at (0.5,0,0), then 
that is your propagation 
vector!

• Reciprocal space is large →
sometimes need to know 
where to look or you’ll miss the 
magnetic peaks.

– Do powder diffraction first

Magnetic propagation vector: k-vector

Powder diffraction

• Get complete coverage of 
reciprocal space, but it is 
averaged.

• Need to index magnetic 
reflections → analysis tool

• Might not get unique k-
vector, especially if 
incommensurate

– Do single crystal to 
check
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General magnetic structure description with k-vectors

• Can state only the spins in the 0th crystallographic unit cell and the 
k-vector describes how the spins are related in all other unit cells.

• All magnetic ordering is periodic, this can be expressed in the 
Fourier series:

ml

m0

Correlation of the spin mj on 
atom j within unit cell l to m0 in 
the 0th unit cell translated by R

mj=Σk Sj
k e-2πik.R

spin at the atomic site j in 

some unit cell that is 

related to the 0th cell (G0) 

by a translation R.

Sj (Basis vector): spin in the 0th cell.

k-vector

Lattice 

translation 

to unit cell
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Examples of using the k-vector formulism: mj= Sj
k e-2πik.R

• Simplest case of k =(0,0,0) = 0

• mlj = S0j e
-2πik.R = S0j e

-2πi0.R = S0j e
0 = S0j = m0J

• Orientation of the magnetic moments in any cell of the crystal are identical to the 0th cell 
→ magnetic unit cell = crystallographic unit cell

• K=000 could be ferromagnetic or antiferromagnetic

k=(0,0),  FM k=(0,0),  AFM
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Extra slides: Refining neutron data
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Basics of fitting diffraction data

Measured peaks have position (Q or HKL), intensity and width

• Peak positions: determined by size and shape of unit cell

• Peak intensities: determined by the atomic number and position of the various 
atoms in the unit cell

• Peak widths: determined by instrument parameters as well as temperature, 
crystal size/quality, strain, 

• Single crystal → integrated intensity of each peak is extracted. So in refinement only 
need to consider a few parameters (extinction, absorption)

• Powder → Overlapping peaks means modelling whole pattern. [Rietveld Refinement]
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Fitting your data: Rietveld refinement (powder)

• Hugo Rietveld: “The method of using the total integrated intensities of the separate groups of overlapping 
peaks in the least-squares refinement of structures, leads to the loss of all the information contained in the 
often-detailed profile of these composite peaks. By the use of these profile intensities instead of the integrated 
quantities in the refinement procedure, however, this difficulty is overcome and it allows the extraction of the 
maximum amount of information contained in the powder diagram.”

• If pattern can be modelled, the fit between observed data and model can be optimized. 

• In powder, unlike single crystal, need to model experiment dependent parameters

– Background

– Peak broadening (sample/instrument)

– Lattice constant

– Absorption and sample shape

– Preferred orientation

• Refinement → need a good starting model

• Neutron data usually required for determining occupancy.



61 Experimental aspects of magnetic structure determination and magnetic space groups

• Cagliotta formula:  FWHM2 = U tan2θ +  V tanθ + W

• U, V, W parameters are a function of instrument collimation and 
monochromator

• Does not take into account guides or focusing of monochromator.

• Spallation sources need extra terms to model resolution from pulse 
shape.

Peak shape varies with scattering angle

G. Caglioti et al., Nucl. Instr. 3, 223-228 (1958)

• Debye-Scherrer cone scattering causes asymmetric peak shapes at low/high angle 
in  I(Q) 1d plots.

If converted to 1d → asymmetric at low 2θ, symmetric at 2θ=90º
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