A VERY BRIEF INTRODUCTION TO GSAS-II.

BRIAN TOBY Senior Scientist toby@anl.gov ROBERT VON DREELE ANL Associate vondreele@anl.gov

Advanced Photon Source Argonne National Laboratory USA

OUTLINE

WHAT I WILL NOT COVER WHAT I WILL COVER (SOME SLIDES PROVIDED) A bit of History: GSAS/EXPGUI GSAS-II details & settings - Section by section details Why GSAS-II & about it - Texture GSAS-II GUI organization - Constraints & restraints Key GSAS-II concepts Profile treatment Sequential refinement Rigid Bodies Magnetism in GSAS-II Incommensurate structures Magnetic Structure Determination Other GSAS-II capabilities Magnetic Space Group - Scripting Identification - Small angle; reflectivity Refinement recipes (for novices)

Also worth noting: FWHM for crystallographic software lifetime should be measured in decades

MOVING FROM GSAS/EXPGUI TO GSAS-II

WHY REINVENT THE WHEEL?

- GSAS issues
 - Basic code developed in 1980's (for VAX, then ported to Unix, then Windows, then Linux then Mac)
 - Not easily extensible; very hard to reuse code
 - GSAS does not provide data reduction, indexing or structure solution tools
 - Limited to 99 datasets & 9 phases (= ∞ in 1985; too few in 2010)
 - GSAS compiles only as 32-bit executable (G77 compiler & PGPLOT obsolete)

EXPGUI issues

- EXPGUI requires a version of Tcl/Tk that is >15 years out of date
- Graphics requires BLT package no longer maintained

MAJOR CAPABILITIES IN GSAS-II

- Any number of datasets: single crystal & powder data of all types (new: pink-beam)
- Any number of phases (standard, protein or magnetic)
- Small angle scattering & reflectometry
- Image integration & PDF computation (w/optional beamline automation)
- Extensive visualization: 2- & 3-D graphics to make sense of just about all numbers
- Sequential and parametric fitting: for 10¹ to 10⁴ related datasets
- API for scripting (fairly extensive, but not complete)
- ~50 worked through tutorials provide examples for different aspects of GSAS-II
- Fundamental parameters
 profile terms

Other

Simple installation kits (Windows, Mac, Linux). Also supported on Raspberry Pi and ARM-Mac ("Apple Silicon")

9

Open source: all code distributed; code developer's manual is nearly 300 pages

Argonne 스

WHAT CAN YOU DO WITH GSAS-II?

GSAS-II has extensive capabilities, some available otherwise only in very specialized programs

- Data reduction/initial processing
 - Image calibration & integration
 - Peak fitting/position determination
 - PDF computation (x-rays)
 - TOF calibration
- Structure solution
 - Indexing
 - Pawley & LeBail intensity extraction
 - Charge flipping
 - Rigid body simulated annealing
 - Fourier maps
- Crystallographic analysis
 - Powder diffraction
 - Single-crystal diffraction
 - Neutron and x-ray diffraction
 - Fitting of any of the above, combined

- Comprehensive constraint & restraints
- Magnetic scattering (soon incommensurate)
- Fitting of modulated (3+1) structural models (neutron or x-ray)
- Multiple-wavelength single crystal
- Fitting of twinned single-crystal datasets
- Parametric structural analysis - Parametric equation fitting
- 2D dataset fitting:
 - Strain fitting
 - Texture fitting
- Stacking fault modeling (DIFFaX)
- Small-angle scattering analysis
- Reflectometry (CW)

10

Argonne 스

WHY USE GSAS-II FOR MAGNETISM?

- GSAS-II is the most modern and powerful package for structural analysis powder and single crystal data
 - Comprehensive; Easy to learn
 - Facile for parametric studies
 - Handles almost all types of diffraction studies in combination
 - Simple transition to magnetism based on chemical crystallography (aka "nuclear structure")

11

- Straight-forward implementation of color space groups (via BNS)
- Integrated into Bilboa and BYU Isotropy web software suites
- In Python, open source
- Actively developed: please send ideas (or even better code)
- Why not GSAS-II:
 - Does not support representational analysis (directly)
 - Does not yet handle incommensurate magnetism
 - No polarized neutron scattering support
 - Actively developed: new code means new bugs

Argonne 스

For Mac menu is in system-determined location (default, top of screen)

OUTPUT WINDOW

- Status information and error messages are displayed in the "DOS" (terminal) window.
 - Look here when things are not working
 - The information here is essential for debugging: please send readable copy
 - Output only: not possible to type any input here

	GSAS-II –	
	General Structure Hnalysis System-II bu Robert R Hop Dweele and Rwian H Tobu	
	Argone National Laboratory(C), 2010	
This pro	duct includes software developed by the UChicago Argonne, LLC,	
	as Operator of Argonne National Laboratory.	
	Please cite:	
В.Н.	Toby and R.B. Von Dreele, J. Appl. Cryst. 46, 544-549 (2013)	
	for small angle use also cite:	
к.в.	foon preele, J. Hppl. Cryst. 47, 1784-7 (2014)	
мм	I Tweeru I M Neusem and M U Deem	
	Proc. Roy. Soc. Lond. 433A. 499-520 (1991)	
C:\Users\	toby.IOBY-UM\Desktop>"C:\Users\toby.IOBY-UM\g2_conda\python.exe"	"C:
ers toby.	UBY-UN 92 CONDANSHSIINGAHSII.DU	0 9
Gana-II D Puthon mo	hary unrectory. C. Osers (tong. 10b1-00192 conta (Ganati (Dinwing4-	-2.7
nuthon:	2-2-12	
pyonon	3.0.0.0	
wxpython:		
wxpython: matplotli	b: 1.4.3	
wxpython: matplotli numpy:	b: 1.4.3 1.9.3	
wxpython: matplotli numpy: scipy:	b: 1.4.3 1.9.3 0.14.0	
wxpython: matplotli numpy: scipy: OpenGL:	b: 1.4.3 1.9.3 0.14.0 3.1.4.1a1	
wxpython: matplotli numpy: scipy: OpenGL: pillow:	b: 1.4.3 1.9.3 0.14.0 3.1.1a1 5.2.0 5.2.0 5.2.0	
wxpython: matplotli numpy: scipy: OpenGL: pillow: Platform This is G	b: 1.4.3 1.9.3 0.14.0 3.1.1a1 3.1.1a1 info: Uning2 64bit AMD64 00: Uning ion: D0 2 0 menicion #2380	
wxpython: matplotli numpy: scipy: OpenGL: pillow: Platform This is G HDF5 Read	b: 1.4.3 1.9.3 0.14.0 3.1.1a1 3.2.0 info: vin32 64bit AMD64 SAS-IL version: 0.2.0 revision #2380 SAS-IL version: 0.2.0 revision #2380 rev skimmed because b5mu library is not installed	
wxpython: matplotli numpy: scipy: OpenGL: pillow: Platform This is G HDF5 Read Loading f	b: 1.4.3 1.9.3 0.14.0 3.1.1a1 info:vin32 64bit AMD64 585-11 ueresion: 0.2.0 revision #2380 585-11 ueresion: 0.2.0 revision #2380 br skipped because h5py library is not installed own file: Z:>Scratch.C22820216Junex82.spx	
wxpython: matplotli numpy: scipy: OpenGL: pillow: Platform This is G HDF5 Read loading f GPX load	b: 1.4.3 1.9.3 0.14.0 3.1.1a1 3.2.0 info: vin32 64bit AMD64 info:	

GSAS-II: TEXTURE F HARMONICS	ROM SPHERICAL GSAS-2
Pole figure for HKL=[1, 1, 1]	Phase Data for stainless steel
	Taxtura Halp
0.5	General Data Atoms Draw Ontions Draw Atoms Texture
	Spherical harmonics texture data for stainless steel: Texture Index J = 1.142
	Collecture model: rolling - mmm 🔻 Harmonic order: 14 💌 🔤 Refine texture? 📝 Show coeff.?
	Texture plot type: Pole figure Projection type: equal area
-0.5	Sale foure HKL: 111 Color scheme Paired
	Sofe cal harmonic coefficients:
	C(40,0,1) -0.142 C(10,10,1) 0.116 C(10,2,1) 0.026 C(10,4,1) -0.081
-1.0 -0.5 0.0 0.5 1.0 Equal area projection	C(10,6,1) 9.095 C(10,8,1) -0.018 C(12,0,1) 0.044 C(12,0,2) 0.257
	C(12,10,1) -0.035 C(12,10,2) 0.361 C(12,12,1) -0.076 C(12,12,2) 0.012
phi = 87.447, gam = -36.896, MRD = 0.704	C(12,2,1) -0.181 C(12,2,2) 0.292 C(12,4,1) -0.015 C(12,4,2) 0.427
	C(12,6,1) 0.128 C(12,6,2) 0.162 C(12,8,1) 0.002 C(12,8,2) 0.013
GSASE Pots	C(14,0,1) 0.070 C(14,10,1) 0.136 C(14,12,1) -0.148 C(14,14,1) -0.136
Structure Factors Texture	C(14,2,1) -0.050 C(14,4,1) 0.005 C(14,6,1) -0.085 C(14,8,1) -0.005
inverse pole figure for XYZ=[0, 0, 1.0]	C(4,0,1) 0-483 C(4,2,1) 0.369 C(4,4,1) -0.408 C(6,0,1) -0.662
	C(6,2,1) -0.488 C(6,4,1) -0.392 C(6,6,1) -0.381 C(8,0,1) 0.117
	C(8,2,1) 0-0.052 C(8,4,1) 0.111 C(8,6,1) 0.003 C(8,8,1) 0.116
	Office Openation angles: Sample onega: 0.00 Sample chi: 4.57 Sample phi: 87.90
	oole
	pe re
-0.5	figur
Equal area projection	
O O + C R R AND - 13 W M00 - 1 303 M + 100 A 31 000	Argonne 4
pr = 0000,000 = 2000,000 = 200,000 = 200,000	

HELP MENU HAS LOTS OF GOOD STUFF

- The help menu will allow you to
 - see what version of GSAS-II you have
 - Update to a new (or older) version
 - Access a single "help" web pageHelp on current data tree item
 - Access ~50 tutorials (as web pages) showcasing different aspects of GSAS-II

ACCESS TUTO	RIALS FROM H		IENU	
5	GSAS-II File Data Calculate	Import Export	Window Hel	b 🔺 🔟 👖
	000	GSASII Plot	s	Search
				Check for updates Regress to an old GSAS-II version Tutorials
				Help on Data tree
Load the files you want t	to have, where you	🐺 GSAS-II	data tree	
want to place them. Exa	mple data files are	File Data	Calculate I	mport Export Help
loaded too.		Loaded	l Data:	About GSAS-II
				Check for updates
😑 💿 🔵 Open Tutorial				Regress to an old GSAS-II version
Select the tutorial to be run and the m	ode of access ?			Tutorials
Download a tutorial and view	a downloaded tutoriola			Tutonais
Select from downloaded tutorials Downl	e downloaded tutorials			Help on Data tree
Browse tutorial on web				
	• •		select tutorial	
Set download location /Users/toby/softwa	re/(tutorial name		description	
Done	Starting GSAS-II		An introduction description of t	n to GSAS-II with starting instructions and a brief the displays.
	Fitting the Starting Background using	g Fixed Points	parameters fro Rietveld refiner	m a suite of fixed points before beginning ment.
	CW Neutron Powder fit for Yttrium-Ir	ron Garnet	This shows a si CW neutron po	imple Rietveld refinement with constraints from owder diffraction data.
	Fitting laboratory X-ray powder data	for fluoroapatite	This shows a s Bragg-Brentan	imple Rietveld refinement with CuKa lab o powder data.
	Combined X-ray/CW-neutron refinen	nent of PbSO4	This shows Rie temperature la data; use is ma thermal expanse	tveld refinement of a structure with room b CuKa data and low temperature CW neutron ade of the lattice parameter offsets to account fe- ion
	Combined X-ray/TOF-neutron Rietve	ld refinement	This shows Rie synchrotron po	tveld refinement with high resolution wder data and neutron TOF data
	Classification Decoder Differentian with C	CAC !!	This show how	to create a simulated powder pattern from a lab
		0	Canc	el

WORTH KNOV FILE/PREFER	VING ABOUT: ENCES MENU COMM	MAND	File Data Calculate
 This is where we pro GSAS-II operates 	ovide options for controlling deta	ails on how	Save project Save project as New project
🥚 🔵 Set (Config Va		Preferences
Select a GSAS-II co	nfigurati		Edit proxy
Arc_mask_azimuth Autoint_PollTime Autoscale_ParmNames Clip_on Column_Metadata_director	y		IPython Console wx inspection tool Quit 業Q
Contour_color	😑 🔿 🔵 Se	et Config Variable	
debug DefaultAutoScale Enable_logging Help_mode	Select a GSAS-II Multiprocessing_cores	configuration variable	e to change
Import_directory Instprm_default logging_debug	Res Description of Multiprocessing_cores	set to Default (=0)	
Main_Pos Main_Size Movie_fps Movie_time Multiprocessing_cores Plot Colors	Specifies the number of cores to use w than zero causes the recommended nu to be used. Setting this number to 0 or computations are performed in-line.	when performing mult umber of cores [using r 1 avoids use of the r	icore computing. A number less g multiprocessing.cpu_count()/2] multiprocessing module: all
Plot_Pos Plot_Size	Save current settings	Use current (no sav	Cancel

GSAS-II TERMS & CONCEPTS

- Controls: affect operation of program (e.g. number of cycles run)
- Parameters: values that affect diffraction computation
 Fitted parameters (Variables): parameters that GSAS-II will optimize
- Constraints: fix or group parameters to reduce model complexity. In effect, reduces number of fitted parameters
- Restraints: introduce external "observations" (prejudice) to push refinement away from non-physical results

Note that both are adding the crystallographer's prejudices into the model. With a constraint, there will be no direct evidence if this prejudice is wrong (but the fit will be worse). The effect of the restraint will depend on how strongly it is weighted.

- Combined fit: where a model is fit to multiple datasets simultaneously
- Sequential fit: a refinement for a set of related datasets where the model is fit to each dataset one-at-a-time

TERMS (CONTINUED)

- Histogram: a set of data (powder, single-crystal, pink beam,...)
 - "Dummy Histogram" specifies a type of dataset to be simulated
 - Note that GSAS-II reads most common data files, but is easily extensible for more
- Instrument Parameters: a file that defines the data type and instrument settings
 - GSAS-II accepts old GSAS .prm files but also has a new more sensible file format

Alternate intensity fitting methods:

 Pawley fitting [G. Stewart] – each reflection intensity for phase is treated as an independent Least-squares variable (same for all histograms)

- · Selected by phase: reflection intensities same for all histograms
- LeBail fitting [Armel...] fits reflection intensities using Rietveld intensity extraction (steepest descents)
 - selected by phase & histogram
 - Initial F_{hkl} values set to unity
 - Is a bit easier to use than Pawley 29

Argonne 스

SPACE GROUP TREATMENT IN GSAS-II

Very flexible space group treatment

- GSAS-II Space group treatment is symbol based:
 - Allows nonstandard space groups symbol interpretation yields operators (Interpretation follows Inter. Tables Vol I, using code by A. C. Larson)
 - NB: does know that e.g. "F m -3 m" is really Fm3m, etc.
- GSAS-II allows non-std space group versions (where is symbol interpreted),
 - e.g. "F d" a variant of Cc
 - Incompatible usage not allowed (something like "R 2/c" won't work).
- Why support non-standard space groups?
 - If phase in *Fmmm* transforms to triclinic, "best" description keeps original cell and would be $F\bar{1}$
- GSAS-II always uses 2nd origin setting (because placing inversion operator @ origin gives simplest computation)
 - Menu command to transform Origin 1 --> Origin 2
- BNS color space groups & (3+1) Superspace groups supported

Argonne 🐴

TO GET HISTOGRAMS & PHASES INTO GSAS-II, USE IMPORT MENU ITEMS

These are "user customizable"

- Import menu is way to get "stuff" into GSAS-II
 - Phases can also be created using Data/Add Phase & enter structure info manually

	Import Export Help		
	Image Phase	*	
	Powder Data Structure Factor Small Angle Data Reflectometry Data PDF G(R) Data Column metadata test		from Bruker RAW file from CIF file from FullProf .dat file from GSAS-II gpx file from Panalytical xrdml (xml) file from comma/tab/semicolon separated file from GSAS powder data file from Rigaku .txt exported file from Topas xye or 2th Fit2D chi file
When GSAS-II is starte	d, it loads in importers		guess format from file
and exporters and insei menus.	ts them into the		Simulate a dataset
These are relatively show to create them.	hort & simple routines a	nd in	structions are provided on

GSAS-II PARAMETER NAMINO	Least Source Parameters
Every parameter in GSAS-II that can be varied has a unique name of form: <ph>:<hist>:<name>:<atom#></atom#></name></hist></ph>	Number of ferfined verticibles 0 Twin writightering in project Parameter figure Parameter figure Parameter figure Phase Parameter figure Parameter figure Phase Parameter figure Parameter figure Phase Parameter figure Parameter figure Other Parameter figure Parameter figure Outperprint Parameter figure Parameter figure Outper Parameter figure Parameter fi
Histogram parameters are named :h: <name></name>	"C" indicates generated from a user entered constraint Close
Example: :1:Scale (Scale factor	for 2 nd histogram)
 Phase parameters are named p::<name></name> Example: 0::vol (Unit cell volume for 1s N.B. computed from response 	^t phase, eciprocal cell tensor)
 Atom parameters are named p::<name>:n</name> Example: 0::AUiso:0 (Uiso for 1st atom 	in 1 st phase)
 Phase*Data parameters are named p:h:<name< li=""> – Example: 1:0:Scale (Phase fraction for </name<>	≻ 2 nd phase in 1 st histogram)
To see the parameters listed and explained, use 34	Calculate/"View LS Parameters"

GSAS-II PROFILE MODEL

Isolate sample effects from instrument

Design: instrument parameters (one set for every histogram) are determined once (with a standard) and are never varied for user samples

- Ideal: beamline scientist provides an instrument parameter file
- DIY: fit profile terms to a standard (see tutorial)
- Worst case: fit for histogram, but limited size/microstrain characterization
- When a file is not available, use "Cancel" to get access to default parameter sets
- CW: generate instrument parameter from "Fundamental Parameters"

Why: When instrumental terms are determined microstrain & crystallite broadening can be varied directly

- microstrain & crystallite broadening terms for each dataset in each phase with choice of varying levels of complexity
- Can you use the old-fashioned approach of refining instrumental terms for each dataset?
 - Yes, but we wish you would not

35

Argonne 🛆

GSAS-II TOF PROFILE TERMS Histogram Type: PNT Bank: 2 Flight path: 63.183 2-theta: 90.00 Name (default) Value **Refine?** difC (22600.248): 22600.248 TOF (microsec) = Zero + difC*d + difA*d² + difB/d difA (-0.901): -0.901 difB (2.623): 2.623 Peak shapes are generated by convolution of double Zero (-8.518): -8.518 exponential and pseudo-Voigt alpha (0.133): 0.133 Rise side (alpha): α/d beta-0 (0.111602): 0.111602 beta-1 (0.002727): 0.002727 • Decay side (beta): $\beta_0 + \beta_1 d^{-4} + \beta_0 d^{-2}$ beta-q (0.000000): 0.0 Gaussian broadening, sigma, sig-0 (56.032): 56.032 $-\sigma = \sigma_0 + \sigma_1^* d^2 + \sigma_2^* d^4 + \sigma_3^* d$ sig-1 (-167.422): -167.422 - FWHM = σ * sqrt (8 ln 2) sig-2 (281.386): 281.386 sig-q (-3.730): -3.73 Lorentzian broadening, gamma, X (0.000): 0.0 $- y = Z + X^*d + Y^*d^2$ Y (0.000): 0.0 = FWHMZ (0.000): 0.0 37 Argonne 📣

SEQUENTIAL REFINEMENT IN GSAS-II

GSAS-II offers three modes for fitting to a set of datasets.

- **Combined refinement**: All phases and parameters are adjusted to best fit all the datasets.
 - Any number of phases, any number of datasets; phase parameters will be the same for all datasets (but note use of D_{ij} allows lattice parameters to differ by dataset)
 - Good for multiple measurements under a single set of conditions (or very similar conditions)
- Sequential refinement: Each dataset is fit, one-at-a-time, to any number of phases.
 - All parameters are allowed to vary to best-fit each dataset in turn (use of D_{ij} required).

Good where there are wide changes in atom positions, phase transformations, etc.
 Sequential Refinement allows for treatment of a large number of datasets in a single project file and with automation.

 Scripting (new): allows for algorithmic adaptation; parallelization,... See tutorial or paper.

O'Donnell, J. H., Dreele, R. B. V., Chan, M. K. Y., and Toby, B. H. (**2018**). "A Scripting Interface for GSAS-II," Journal of Applied Crystallography **51**, 1244-1250.

39

Argonne 合

SEQUENTIAL REFINEMENT CONCEPT

Concept: set up a refinement on the first dataset.

- Repeat that refinement on subsequent datasets varying the same parameters
- When there are changes in the sample that require extra parameters (one example, appearance of a new phase), one can add new parameters for subsequent refinements
- Optional: copy the results from fitting each dataset as the starting point for fitting next (usually a good idea).
 - Only possible when parameters are the same for all datasets in the series
- It is possible to do initial fitting with a subset of patterns in the project file and then go on to a different subset of patterns,...
 - In the end, conduct a sequential fit over all subsets
- Sequential refinements produce a convenient table of results that can be used for plotting of secondary fitting.

Note: automation does not lift the requirement that you must think about what you are doing and carefully review results from your fits.

41

Argonne 🛆

NOTES ON LATTICE CONSTANTS

- Cell lengths are associated with phases, but are expected to change in a parametric study
 - For each histogram, there are a set of hydrostatic strain tensors; these modify the cell parameters
 - These D_{ij} values must be refined in a sequential fit
- This means one can do a combined fit with lattice constants differing by dataset (histogram) (but all coordinates, Uiso values etc. will be the same)
- One cannot refine unit cell parameters and D_{ij} values for a phase at the same time.

EQUATION OF STATE (PARAMETRIC) FITTING

- New parameters may be described as functions of existing variables and values (Pseudo Vars)
 - Function is defined in Python allowing completely arbitrary, non-linear expressions
 - Covariance is properly used to estimate uncertainties on pseudo vars
- Variables and pseudo vars may be plotted
- Arbitrary parametric functions may be fit to variables and pseudo vars
 - Uncertainties properly used in weighting
 - Fit values may be shared across multiple parametric functions

000				Expre	ssion Editor	
		Edit	the fe	ormula for t	this minimiza	tion function
(: ()::c = b i	ft <	= t0 else b	+ c * (1-(t-t0))**d)
Validate) F	xpres	sion evalu	lates	to: 8.5118	Variable "0:	c" = 8.53650548203
	Assic	nment o	fvari	ables to lab	bels:	
	label	varib. ty selectio	pe n	variable	value	refine flag
	b	Free	\$	b_2	8.5118	
	c	Free	\$	c_1	2.432	
	d	Free	•	d	-0.025	
	t		\$	Temperatu	ure 6.778	
	tO	Free	•	t0_1	120.	
Fit						Cancel OK

501110

GSAS-II CONSTRAINT CLASSES

GSAS-II has many types of constraints:

- Phase (interrelating atom parameters, sample values,...)
- Histogram (interrelating instrumental profile, scale factor...)
- Specimen (Histogram*Phase) (interrelating microstrain, crystallite size...)
- Global (parameters independent of phase or histogram)
- Symmetry-Generated (on cell and atom parameters, read-only)

Rigid body constraints are implemented with a comprehensive GUI for defining them (see tutorial)

GSAS-II CONSTRAINT TYPES

Constraints come in four flavors

- Holds: This prevents a named parameter from changing, for example to keep the z value for an atom from shifting even though the coordinates are varied.
 Hold dAz for O5, phase 0
- Equivalence: This "chains together" multiple parameters so that one variable determines several parameters
 - Uiso for atom 1 = Uiso for atom 2 = 0.5 * Uiso for atom 3…
- Constraint: This defines that a set of parameters must add up to a constant
 Frac(atom 1) + Frac(atom 2) + Frac(atom 3) = 1.0
 - In this example, three degrees of freedom have been lowered to two via this constraint
- New Variable:
 - Frac for atom 1 + Frac for atom 2 + Frac for atom 3 = new variable
 - This will allow definition of distortion mode(s), based on representational analysis

These constraints can be combined and mixed as long as the equations are internally consistent. Example:

- Frac(atom 1) + Frac(atom 2) + Frac(atom 3) = 1.0
- Frac(atom 1) = Frac(atom 2)
 - This leaves a single degree of freedom

Argonne 🛆

RIG	SID	В	OD	IE	S IN	GSAS-II		
Allov Enha ■ Rig	w sii ance id bo	mp ed v die:	lifica with s fix r	ext ext relat	n of s ensiv ive pos	tructural models e graphics sitions of atoms, but torsion refinement is po	ossible	
• RB' _	's hav have	ve a gro	a sing oupeo	gle o d AD	rigin q)P (sin	uaternion for positioning (max 6 params) ple or TLS) & occupancy fitting		
•		GS	SAS-II project	t: BodyDef.	dbx		04 Ce [®] 03	
roject: /Users/toby/Scratc	4 Genera	l Data	Atoms	Draw Optio	ns Draw Ator	s RB Models Map peaks MC >	02	
Notebook Controls	Locating rig	gid body	: pyracine	Display cry	stal structure as	Ball & Sticks Sticks		
Covariance Constraints	Origin: x (0.0	у 0.0		z 0.0	Lock		
Restraints	Orientation	azimuth	: 180.0		0.0	7: 0.1247 (frag coorde)		
Rigid bodies PWDR Co PCP Act d90	Chemation	vector	x. 0.0058	у.	0.0		T	
Comments	Rigid body	symmet	ry axis: 🔾 🔾	None :	к Оу	Uz Ux+y Vx+y+z		
Limits Background	Side chain	torsion f	or rb seq: C1	C5 01)	Angle: 0.0		
Instrument Parameter	Side chain	torsion f	or rb seq: C2	C6 O3)	Angle: 0.0		
Sample Parameters		. Y	0					
Index Peak List	Ad	a	Cancel					
Unit Cells List	Match betw	veen ato	ms in rigid bo	dy and cry	stal. Use assign	ents to align bodies.		
Phases		RB	phase phase # label	delta, A	Assign as atom	Crystal Highlight:		
Co-PCP	C1	С	11 C6	8.034		Actions with assigned		
	C2	C	12 C7	9.213		atom(s)		
	C3	C	8 C3	8.342		Process Assignments		
	C5	c	10 C5	12.268				
	C6	С	9 C4	12.880		Set Origin		
	N1	N	13 N13	9.511		Set Orientation		
	N2	N	14 N14	10.653		Set both 40		1
	01	0	15 016	8.424		49		
RB drag/drop to reorder								

MUCH OF GSAS-II CAN BE ACCESSED FROM PYTHON SCRIPTS

All features in GSAS-II are available from the GUI; increasing amounts of the capabilities are designed to be used from Python scripts

The GSASIIscriptable import os, sys module provides access sys.path.insert(0,'/Users/toby/software/G2/GSASII') to key parts of the import GSASIIscriptable as G2sc datadir = "/Users/toby/software/G2/Tutorials/PythonScript/data" GSAS-II code PathWrap = lambda fil: os.path.join(datadir,fil) gpx = G2sc.G2Project(filename='PbSO4sim.gpx') # create a project phase0 = gpx.add_phase(PathWrap("PbS04-Wyckoff.cif"), Example: phasename="PbS04",fmthint='CIF') # add a phase to the project # add a simulated histogram and link it to the previous phase(s) Script to simulate a hist1 = gpx.add_simulated_powder_histogram("PbS04 simulation", diffraction pattern PathWrap("inst_dla.prm"),5.,120.,Npoints=1000, phases=gpx.phases(),scale=500000.) gpx.do_refinements() # calculate pattern gpx.save() # save results gpx.histogram(0).Export('PbSO4data','.csv','hist') # data gpx.histogram(0).Export('PbS04refl','.csv','refl') # reflections

EXTENSIVE CODE DOCUMENTATION

Currently the documentation is ~400 pages (in PDF), including extensive indices

GSAS-II USES BNS COLOR SPACE GROUPS TO DESCRIBE MAGNETIC STRUCTURES

- OG Opechowski-Guccione(1965): 1651 unique magnetic space groups in book (Litvin, 2013 available on line from IUCr; NB: >11,000 pages!). 1651 = 1191magnetic+230 gray+230 nonmagnetic groups. For type IV magnetic structures the unit cell does not generate the lattice of magnetic moments & requires fractional hkls for reciprocal lattice.
- BNS Belov-Neronova-Smirnova(1957): unit cell does generate complete magnetic lattice (e.g. type IV cell doubling with added lattice centering operations); hkl always integers. BNS set in Shubnikov, Belov, et al. book *Colored Symmetry* (1964).
- Stokes & Campbell compiled BNS/OG mag space group data computer readable (but only std versions & 1st setting).
- GSAS-II uses group theory to interpret space group symbols, which allows for interpretation of non-standard settings (e.g. "F d" – a variant of Cc; inconsistent symbols like "R 2/c" won't work). NB: GSAS-II always uses 2nd setting (inversion @ origin).
- Spin flips → Pnma: Pn'm'a, Pnm'a', etc. by choice; can be non-std
- Type IV Transformation tool to new cell & add lattice centering; moves atoms Pnma: P_anma, P_bnma, P_cnma, etc.

53

Argonne 🛆

MAGNETIC SYMMETRY IN GSAS-II

BNS Symbol driven; Always 2nd Origin setting (if appropriate)

- For magnetism:
 - Spin flip designation on generators (e.g. symbol components)
 - Magnetic type IV by transformation from chemical cell (with constraints) & selection of magnetic centering type
 - Grey groups by adding 1' to symbol (incommensurate only)
- When BNS space group is generated by transform from chemical cell, it can be changed after input
 - Generates BNS symbol for standard and non-standard space group settings
- GSAS-II Magnetic moments: components along crystal axes
 - Units: Bohr magnetons.
 - (NB: old GSAS used Cartesian magnetic moment components)

TO LEARN HOW TO PERFORM MAGNETIC REFINEMENTS, SEE TUTORIALS

6 tutorials cover different

- See tutorials in Help menu
- or http://bit.ly/GSASIItutorials (https://subversion.xray.aps.anl.gov/pyGSAS/trunk/help/Tutorials.html)

← → C ☆ ① ▲ https://subversion.xray.aps.anl.gov/pyGSAS/trunk/h ∨ Ξ 133% ···· ♡ ★ ½ Q. Search III、 ① ④

Simple Magnetic Structure Ar Analysis of a simple ant Magnetic Structure Analysis- Analysis of a simple antiferromagnet and a simple ferromagnet from CW neutron powder data Magnetic Structure Analysis-1 Analysis of a antiferromagnet using Bilbao Magnetic Structure Analysis-1 Analysis of a antiferromagnet using Bilbao Magnetic Structure Analysis-1 Analysis of a antiferromagnet with change of space group using Bilbao k-SUBGROUPSMAG from CW neutron powder data Magnetic Structure Analysis-1 Magnetic Structure Analysis-1V Magnetic Structure Analysis-1V Analysis of a Type IV antiferromagnet with a cell axis doubling using Bilbao k-SUBGROUPSMAG from CW neutron powder data Analysis of a Type IV antiferromagnet with a lattice centering change using Bilbao k-SUBGROUPSMAG from CW neutron powder data Magnetic Structure Analysis-V Propagation vectorse using Bilbao k-SUBGROUPSMAG from TOF neutron powder data Magnetic Structure Analysis-V Magnetic S	Magnetic Structure Analysis			
Analysis of a simple and tutorial name description Magnetic Structure Analysis-I Simple Magnetic Structure Analysis Analysis of a simple antiferromagnet and a simple ferromagnet from CW neutron powder data Magnetic Structure Analysis-I Analysis of a simple antiferromagnet using Bilbao Magnetic Structure Analysis-I Analysis of a simple antiferromagnet using Bilbao Analysis of a antiferrom powder data Analysis of a antiferromagnet with change of space group using Bilbao k-SUBGROUPSMAG from CW neutron powder data Magnetic Structure Analysis-I Analysis of a antiferromagnet with a lattice centering center of a tage using Bilbao k-SUBGROUPSMAG from CW neutron powder data Magnetic Structure Analysis-II Analysis of a Type IV antiferromagnet with a lattice centering change using Bilbao k-SUBGROUPSMAG from CW neutron powder data Magnetic Structure Analysis-II Magnetic Structure Analysis-II Magnetic Structure Analysis-II Analysis of a Type IV antiferromagnet with a lattice centering change using Bilbao k-SUBGROUPSMAG from CW neutron powder data Magnetic Structure Analysis-I Magnetic Structure Analysis-IV Analysis of a Type IV antiferromagnet with two propagation vectorse using Bilbao k-SUBGROUPSMAG from CV neutron powder data Magnetic Structure Analysis-I Magnetic Structure Analysis-V Propagation vectorse using Bilbao k-SUBGROUPSMAG from TOF neutron powder data Magne	Simple Magnetic Structure A		select tutorial	•
 Magnetic Structure Analysis- Analysis of a simple antiferromagnet and a simple ferromagnet from CW neutron powder data Magnetic Structure Analysis- Analysis of a antiferrom powder data Magnetic Structure Analysis- Magnetic Structure	Analysis of a simple and	tutorial name	description written as a primap me, a pur me	or be exported to the orace or
Analysis of a simple and Magnetic Structure Analysis-I Analysis of a simple antiferromagnet using Bilbao k-SUBGROUPSMAG from CW neutron powder data Analysis of a antiferrom powder data Magnetic Structure Analysis-II Analysis of a triferromagnet with change of space group using Bilbao k-SUBGROUPSMAG from CW neutron powder data Magnetic Structure Analysis-I Magnetic Structure Analysis-II Analysis of a Type IV antiferromagnet with a cell axis doubling using Bilbao k-SUBGROUPSMAG from CW neutron powder data Magnetic Structure Analysis-II Magnetic Structure Analysis-III Analysis of a Type IV antiferromagnet with a cell axis doubling using Bilbao k-SUBGROUPSMAG from CW neutron powder data Analysis of a Type IV antiferromagnet with a cell axis doubling using Bilbao k-SUBGROUPSMAG from CW neutron powder data Analysis of a Type IV antiferromagnet with a lattice centering change using Bilbao k-SUBGROUPSMAG from CW neutron powder data Magnetic Structure Analysis-IV Magnetic Structure Analysis-IV Change using Bilbao k-SUBGROUPSMAG from TOF neutron powder data Magnetic Structure Analysis-IV Magnetic Structure Analysis-IV Analysis of a complex Type IV antiferromagnet with two propagation vectorse using Bilbao k-SUBGROUPSMAG from TOF neutron powder data Magnetic Structure Analysis-IV Sequential refinement of multiple datasets This shows the fitting of a structural model to multiple data sets collected as a function of temperature (7_300k). This Magnetic Structure Analysis-IV Ok Cancel	Magnetic Structure Analysis-	Simple Magnetic Structure Analysis	Analysis of a simple antiferromag from CW neutron powder data	net and a simple ferromagnet
Analysis of a antiferrom powder data Analysis of a antiferrom powder data Analysis of a antiferrom powder data Magnetic Structure Analysis-II Magnetic Structure Analysis-II Analysis of a Type IV antiferromagnet with a lattice centering Analysis of a Type IV antiferromagnet with a lattice centering Analysis of a Type IV antiferromagnet with a lattice centering Analysis of a Type IV antiferromagnet with a lattice centering Analysis of a Type IV antiferromagnet with a lattice centering Change using Bilbao k-SUBGROUPSMAG from CW neutron powder data Analysis of a Type IV antiferromagnet with a lattice centering Change using Bilbao k-SUBGROUPSMAG from CW neutron powder data Magnetic Structure Analysis-IV Change using Bilbao k-SUBGROUPSMAG from CW neutron powder data Analysis of a Type IV antiferromagnet with two propagation vectorse using Bilbao k-SUBGROUPSMAG from TOF neutron powder data Analysis of a Type IV antiferromagnet and the multiple datasets Magnetic Structure Analysis-I Magnetic Structure An	Analysis of a simple and	Magnetic Structure Analysis-I	Analysis of a simple antiferromag k-SUBGROUPSMAG from CW neu	net using Bilbao utron powder data
powder data Magnetic Structure Analysis-III Analysis of a Type IV antiferromagnet with a cell axis doubling using Bilbao k-SUBGROUPSMAG from CW neutron powder data • Magnetic Structure Analysis-I Magnetic Structure Analysis-IV Analysis of a Type IV antiferromagnet with a cell axis doubling using Bilbao k-SUBGROUPSMAG from CW neutron powder data • Magnetic Structure Analysis-I Magnetic Structure Analysis-IV Analysis of a Type IV antiferromagnet with a cell axis doubling using Bilbao k-SUBGROUPSMAG from CW neutron powder data • Magnetic Structure Analysis-I Magnetic Structure Analysis-IV Analysis of a complex Type IV antiferromagnet with two propagation vectorse using Bilbao k-SUBGROUPSMAG from CW neutron powder data • Magnetic Structure Analysis-I Magnetic Structure Analysis-V Propagation vectorse using Bilbao k-SUBGROUPSMAG from TOF neutron powder data • Magnetic Structure Analysis-I Magnetic Structure Analysis-V Propagation vectorse using Bilbao k-SUBGROUPSMAG from TOF neutron powder data • Magnetic Structure Analysis-I Magnetic Structure Analysis-V Propagation vectorse using Bilbao k-SUBGROUPSMAG • Magnetic Structure Analysis-I Magnetic Structure Analysis-V Propagation vectorse using Bilbao k-SUBGROUPSMAG • Magnetic Structure Analysis-I Magnetic Structure Analysis-I Magnetic Structure Analysis-I • Magnetic Structure Analysis-I Magnetic Structure Analysis of a complex Type IV antiferromagnet with two	Analysis of a antiferron	Magnetic Structure Analysis-II	Analysis of a antiferromagnet with using Bilbao k-SUBGROUPSMAG	n change of space group from CW neutron powder data
Magnetic Structure Analysis of a Type IV antiferromagnet with a lattice centering change using Bilbao k-SUBGROUPSMAG from CW neutron powder data Magnetic Structure Analysis-IV antiferromagnet with a lattice centering change using Bilbao k-SUBGROUPSMAG from CW neutron powder data Magnetic Structure Analysis-IV antiferromagnet with two propagation vectorse using Bilbao k-SUBGROUPSMAG from TOF neutron powder data Magnetic Structure Analysis-IV antiferromagnet with two propagation vectorse using Bilbao k-SUBGROUPSMAG from TOF neutron powder data Magnetic Structure Analysis-IV antiferromagnet with two propagation vectorse using Bilbao k-SUBGROUPSMAG from TOF neutron powder data Magnetic Structure Analysis-IV antiferromagnet with two propagation vectorse using Bilbao k-SUBGROUPSMAG from TOF neutron powder data	powder data	Magnetic Structure Analysis-III	Analysis of a Type IV antiferromag using Bilbao k-SUBGROUPSMAG	gnet with a cell axis doubling from CW neutron powder data
Analysis of a complex Type IV antiferromagnet with two magnetic Structure Analysis-I Analysis of a Type IV antiferromagnet with two magnetic Structure Analysis-V Analysis of a Type IV antiferromagnet with two meutron powder data Magnetic Structure Analysis-V Analysis of a complex Type IV antiferromagnet with two meutron powder data Magnetic Structure Analysis-V Analysis of a complex Type IV antiferromagnet with two meutron powder data Magnetic Structure Analysis-V Analysis of a complex Type IV antiferromagnet with two propagation vectorse using Bilbao k-SUBGROUPSMAG from TOF neutron powder data	Magnetic Structure Analysis- Analysis of a Type IV an neutron powder data	Magnetic Structure Analysis-IV	Analysis of a Type IV antiferromage change using Bilbao k-SUBGROU powder data	gnet with a lattice centering PSMAG from CW neutron
Analysis of a Type IV an CW neutron powder dat • Magnetic Structure Analysis- Analysis of a complex Type IV antiferromagnet with two propagation vectorse using Bilbao k-SUBGROUPSMAG from TOF neutron powder data	Magnetic Structure Analysis-	Magnetic Structure Analysis-V	Analysis of a complex Type IV ant propagation vectorse using Bilbac neutron powder data	iferromagnet with two b k-SUBGROUPSMAG from TOF
Magnetic Structure Analysis- OK Cancel Analysis of a complex Type IV antiferromagnet with two propagation vectorse using Bilbao k-SUBGROUPSMAG from TOF neutron powder data	Analysis of a Type IV an CW neutron powder dat	Samuantial rafinament of multiple datacate	This shows the fitting of a structure sets collected as a function of ter	ral model to multiple data
Analysis of a complex Type IV antiferromagnet with two propagation vectorse using Bilbao k-SUBGROUPSMAG from TOF neutron powder data	 Magnetic Structure Analysis-' 		OK Cancel	
Argonne	Analysis of a complex T from TOF neutron powe	ype IV antiferromagnet with two propagation vectors ler data	e using Bilbao k-SUBGROUPSMAG	Argonne 📣

CAN VIEW EXTINCTIONS FOR SELECTED BNS SPACE GROUP

After calling Bilboa k-SUBGROUPMAG to generate list

Project Ba6Co6 - Copy.gpx Inc	dexing contr	ols					10							
Controls	ax Nc/Nobs	4	_		5 268	t Volum	e [22		0	e M20/(X20+	1)2			
Covariance	fect Bravais I	Lattices for i	ndexi	ng:										
Constraints	Cubic-F		bic-l			Cubic-P		Trigona	I-R	Trigona	l/Hetagona	al-P 🗌 Tet	ragonal-l	
Restraints	Orthorhomb	nic-F 🗌 Or	thorh	ombic	1 🗆	Orthorh	mbic-	A Orthorn	hombic-8	Orthorh	ombic-C	00	thorhombic	el.
- Rigid bodies	Monoclinic-	P 🗌 Tri	clinic											
PWDR Ba6Co6.xye Ce	ell Test Refin	ement												
Comments Bri	avais lattice	P6/mmm	~ Se	pace gro	pup P	-6 m 2	~ 1	Zero offset 0.0	0		efine? S	uper lattice	Magne	eti
- Limits						-								
- Background S	ihow hkl pos	itions												
Instrument Parameters Un	sit celt a s	5.64871		14	en [14,4658		Tel Vol	. 399.7	35	-			
- Sample Parameters				-										
Max List Mi	agnetic subs	roup cells fr	inen S	Silhan k	SURG	ROLIPSA.	IAG for	D for him	1.00.01	7%-				
Martine Martine 1 and		and a second second second		PROPER N		10.04	0400 101	P -0 m 2; KY0	c1=(0,0,1)	44				
- Index Peak List		Space Gp	Try	Keep	Uniq	nConj	nSup	Trans	Vec	4	ь	c	alpha	
- Index Peak List - Unit Cells List - Reflection Lists		Space Gp	Try	Keep	Uniq	nConj	nSup	Trans	Vec 0.0.1/2	a 5.64871	b 5.64871	¢	alpha 90.000	
Unit Cells List Reflection Lists	1	Space Gp P_c -6c2 P_c -6c2	Try	Keep	Uniq 3	nConj	nSup	Trans a,b,2c a,b,2c	Vec 0,0,1/2	a 5.64871 5.64871	b 5.64871 5.64871	¢ 28.93160 28.93160	alpha 90.000	
Unit Cells List Reflection Lists Phases Ba5Co5	1 2 3	Space Gp P_c -6c2 P_c -6c2 P_c -6c2	Try	Keep	Uniq 3	nConj 1	nSup 1	Trans a,b,2c a,b,2c a,b,2c	Vec 0,0,1/2 0,0,0 0,0,1/2	a 5.64871 5.64871 5.64871	b 5.64871 5.64871 5.64871	¢ 28.93160 28.93160 28.93160	alpha 90.000 90.000	
- Index Peak List - Unit Cells List - Reflection Lists - Phases - Ba6Co6	1 2 3 4	Space Gp P_c -6c2 P_c -6c2 P_c -6m2 P_c -6m2		Keep	Uniq 3 3 3	nConj 1 1	nSup 1 1	Trans a,b,2c a,b,2c a,b,2c a,b,2c	Vec 0,0,1/2 0,0,0 0,0,1/2 0,0,0	2,2 3 5.64871 5.64871 5.64871 5.64871	b 5.64871 5.64871 5.64871 5.64871	¢ 28.93160 28.93160 28.93160 28.93160	alpha 90.000 90.000 90.000 90.000	
- Unit Cell List - Unit Cell List Reflection Lists - Phases - Ba6Co6	1 2 3 4 5	Space Gp P_c -6c2 P_c -6c2 P_c -6m2 P_c -6m2 P_c -6m2			Uniq 3 3 3 3 3	nConj 1 1 1	nSup 1 1 1 1 2	Trans a,b,2c a,b,2c a,b,2c a,b,2c a,b,2c a,b,2c	Vec 0,0,1/2 0,0,0 0,0,1/2 0,0,0 0,0,1/2 0,0,0 0,0,1/2	a 5.64871 5.64871 5.64871 5.64871 5.64871	b 5.64871 5.64871 5.64871 5.64871 5.64871	c 28.93160 28.93160 28.93160 28.93160 28.93160 28.93160	alpha 90.000 90.000 90.000 90.000 90.000	
- Unit Cell List - Unit Cell List - Reflection Lists - Phases - BastCo5	1 2 3 4 5 6	Space Gp P_c -6c2 P_c -6c2 P_c -6m2 P_c -6m2 P_c -6 P_c -6 P_c -6	Try 90000		Uniq 3 3 3 3 3 3 3 3 3 3 3 3 3 3	nConj 1 1 1 1	nSup 1 1 1 1 2 2	Trans a,b,2c a,b,2c a,b,2c a,b,2c a,b,2c a,b,2c a,b,2c	Vec 0,0,1/2 0,0,0 0,0,1/2 0,0,0 0,0,1/2 0,0,0 0,0,1/2 0,0,0	2,5 3.5,64871 5.64871 5.64871 5.64871 5.64871 5.64871 5.64871	b 5.64871 5.64871 5.64871 5.64871 5.64871 5.64871	¢ 28.93160 28.93160 28.93160 28.93160 28.93160 28.93160 28.93160	alpha 90.000 90.000 90.000 90.000 90.000 90.000	
Inder Yeak List Unit Cells List Reflection Lists Phases Ba6Co6	1 2 3 4 5 6 7	Space Gp P_c =6c2 P_c =6c2 P_c =6m2 P_c =6m2 P_c =6 P_c =6 P_c =6 P_c =6 P_c =6 P_c =1c1	Try 900000	Keep 9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Uniq 3 3 3 3 3 3 3 3 6	nConj 1 1 1 1 1 1 1 1 1	nSup 1 1 1 1 2 2 2	Trans a,b,2c a,b,2c a,b,2c a,b,2c a,b,2c a,b,2c a,b,2c a,b,2c	Vec 0,0,1/2 0,0,0 0,0,1/2 0,0,0 0,0,1/2 0,0,0 0,0,1/2 0,0,0 0,0,0	2,5 3,564871 5,64871 5,64871 5,64871 5,64871 5,64871 5,64871	b 5.64871 5.64871 5.64871 5.64871 5.64871 5.64871 5.64871	c 28.93160 28.93160 28.93160 28.93160 28.93160 28.93160 28.93160	alpha 90.000 90.000 90.000 90.000 90.000 90.000	
Inder Veak List Unit Cells List Reflection Lists Phases Ba5Co6	1 2 3 4 5 6 7 8	Space Gp P_c -6c2 P_c -6c2 P_c -6m2 P_c -6m2 P_c -6 P_c -6 P_c -6 P_c -6 P_c -6 P_c -6 P_c -3c1 P_c -3m1		Keep Ø Ø Ø Ø	Uniq 3 3 3 3 3 3 3 3 6 6 6	nConj 1 1 1 1 1 1 1 1 1 1	nSup 1 1 1 1 1 2 2 2 2 2 2	Trans a,b,2c a,b,2c a,b,2c a,b,2c a,b,2c a,b,2c a,b,2c a,b,2c a,b,2c	Vec 0,0,1/2 0,0,0 0,0,1/2 0,0,0 0,0,1/2 0,0,0 0,0,0 0,0,0 0,0,0	2,5 5.64871 5.64871 5.64871 5.64871 5.64871 5.64871 5.64871 5.64871	b 5.64871 5.64871 5.64871 5.64871 5.64871 5.64871 5.64871	c 28.93160 28.93160 28.93160 28.93160 28.93160 28.93160 28.93160 28.93160	alpha 90.000 90.000 90.000 90.000 90.000 90.000 90.000	
Inder Veak List Unit Cells List Reflection Lists Phases Ba5Co6	1 2 3 4 5 6 7 8 9	Space Gp P_c - 6c2 P_c - 6c2 P_c - 6m2 P_c - 6m2 P_c - 6 P_c - 6 P_c - 6 P_c - 6 P_c - 6 P_c - 3c1 P_c - 312			Uniq 3 3 3 3 3 3 3 3 6 6 6 6 3	nConj 1 1 1 1 1 1 1 1 1 1 1 1 1	nSup 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2	Trans a,b,2c a,b,2c a,b,2c a,b,2c a,b,2c a,b,2c a,b,2c a,b,2c a,b,2c a,b,2c a,b,2c	Vec 0,0,1/2 0,0,0 0,0,1/2 0,0,0 0,0,1/2 0,0,0 0,0,0 0,0,0 0,0,0 0,0,0 0,0,0 0,0,0/2	* 5.64871 5.64871 5.64871 5.64871 5.64871 5.64871 5.64871 5.64871 5.64871	b 5.64871 5.64871 5.64871 5.64871 5.64871 5.64871 5.64871 5.64871	c 28.93160 28.93160 28.93160 28.93160 28.93160 28.93160 28.93160 28.93160 28.93160	alpha 90.000 90.000 90.000 90.000 90.000 90.000 90.000	
Inder Veak Luit Unit Cells Lint Reflection Lists Phases Ba6Co6	1 2 3 4 5 6 7 8 9 10	Space Gp P_c - 6c2 P_c - 6c2 P_c - 6m2 P_c - 6m2 P_c - 6 P_c - 6 P_c - 6 P_c - 6 P_c - 3c1 P_c - 312 P_c - 312			Uniq 3 3 3 3 3 3 3 6 6 6 6 3 3 3 3 3 3 3 3	nConj 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	nSup 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2	Trans a,b,2c	Vec 0,0,1/2 0,0,0 0,0,1/2 0,0,0 0,0,1/2 0,0,0 0,0,0 0,0,0 0,0,0 0,0,0 0,0,0 0,0,0 0,0,0 0,0,0 0,0,0 0,0,0 0,0,0 0,0,0 0,0,0 0,0,0 0 0,0 0,0 0 0,0 0,0 0,0 0 0,0 0 0,0 0 0,0 0 0,0 0 0,0 0 0,0 0 0,0 0 0,0 0 0,0 0 0,0 0 0,0 0 0,0 0 0,0 0 0,0 0 0,0 0 0 0,0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	* 5.64871 5.64871 5.64871 5.64871 5.64871 5.64871 5.64871 5.64871 5.64871 5.64871	b 5.64871 5.64871 5.64871 5.64871 5.64871 5.64871 5.64871 5.64871 5.64871	 c 28.93160 	alpha 90.000 90.000 90.000 90.000 90.000 90.000 90.000 90.000	
Inder Yeak List Unit Cells List Reflection Lists Phases Ba5Co6	1 2 3 4 5 6 7 8 9 10 11	Space Gp P_c = 6c2 P_c = 312 P_c = 312 P_c = 32 P_c			Uniq 3 3 3 3 3 3 3 3 6 6 6 3 3 3 6 6 3 3 3 6	nConj 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	nSup 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2	Trans a,b,2c	Vec 0,0,1/2 0,0,0 0,0,1/2 0,0,0 0,0,1/2 0,0,0 0,0,0 0,0,0 0,0,0 0,0,0 0,0,0 0,0,0 0,0,0 0,0,0 0,0,0 0,0,0	* 5.64871 5.64871 5.64871 5.64871 5.64871 5.64871 5.64871 5.64871 5.64871 5.64871	b 5.64871 5.64871 5.64871 5.64871 5.64871 5.64871 5.64871 5.64871 5.64871	c 28.93160 28.93160 28.93160 28.93160 28.93160 28.93160 28.93160 28.93160 28.93160 28.93160 28.93160	alpha 90.000 90.000 90.000 90.000 90.000 90.000 90.000 90.000	

MAGNETIC SPACE GROUP SELECTION

Need exhaustive list that are subgroups of parent grey group

Magnetic space group is from loss of symmetry Parent: I 4_1 /amd1' \rightarrow 128 operations!

x+1/2,y+1/2,z+1/2 -y+3/4,x+1/4,z+3/4 -x,-y+1/2,z y+3/4,-x+3/4,z+1/4 -x+1/2,y+1/2,z+1/2 -y+3/4,-x+1/4,z+3/4 y-x+1/2,z+1/2 x,y,z -y+1/4,x+3/4,z+1/4 -x+1/2,-y,z+1/2 y+1/4,-x+1/4,z+3/4 -x,y,z -y+1/4,-x+3/4,z+1/4 -y-3)4,-x+1/4,2+3)4 x,-y+1/2,z y+3/4,x+3)4,2+1/4 -x+1/2,-y+1/2,-z+1/2 y+1/4,-x+3/4,-z+1/4 x,y+1/2,-z y+1/4,x+1/4,-z+3/4 x+1/2,-y+1/2,-z+1/2 y+1/4,x+3/4,-z+1/4 x+1/2,-y+1/2,-z+1/4 x+1/2,-y,z+1/2 y+1/4,x+1/4,z+3/4 -x,-y,-z -x,-y,-z y+3/4,-x+1/4,-z+3/4 x+1/2,y,-z+1/2 -y+3/4,x+3/4,-z+1/4 x,-y,-z y+3/4,x+1/4,-z+3/4 y+3/4,x+1/4,-z+3/4 -x+1/2,y-z+1/2 -y+3/4,-x+3/4,-z+1/4 +x',y',-z y+3/4,-x+1/4,-z+3/4 x+1/2,y,-z+1/2 -y+3/4,x+1/4,-z+1/4 x,y',z +x'1/2,y',-z+1/2 -y+3/4,-x+3/4,-z+1/4 x,y/z -x,y+1/2,-z -x,y+1/2,-z -y+1/4,-x+1/4,-z+3/4 -x+1/2,-y+1/2,-z+1/2 y+1/4,-x+3/4,-z+1/4 x,y+1/2,-z -y+1/4,x+1/4,-z+3/4 x+1/2,-y+1/2,-z+1/2 y+1/4,x+3/4,-z+1/4 x+1/4,-z+3/4 -x,y+1/2,-z -y+1/4,-x+1/4,-z+3/4 -y+1/4,-x+1/4,-z+3/4 x+1/2,y+1/2,z+1/2 -y+3/4,x+1/4,z+3/4 -x,-y+1/2,z y+3/4,-x+3/4,z+1/4 -x+1/2,y+1/2,z+1/2 -y+3/4,-x+1/4,z+3/4 x+1/1/2,z+1/2 x,y,z -y+1/4,x+3/4,z+1/4 -x+1/2,-y,z+1/2 -x+1/2,-y,Z+1/2 y+1/4,-x+1/4,Z+3/4 -x,y,Z -y+1/4,-x+3/4,Z+1/4 x+1/2,-y,z+1/2 y+1/4,x+1/4,z+3/4 x,-y+1/2,z y+3/4,x+3/4,z+1/4

Actually twice as many with 0,1/2,0 prop. vector! Now start removing cycles of operations to give new space group (subgroup of parent) NB: new origin might be different to match standard setting Horrible job by hand! Use Bilbao tools: k-SUBGROUPSMAG

RESULT FROM k-SUBGROUPSMAG (GSAS) 205 possible magnetic space subgroups (64 maximal) for $14_1/amd \& k=(0,\frac{1}{2},0) + (0,0,0)$ Project: Mn3O4 10K - Copy.gpx Indexing controls: roject: Mn3O4 --- Notebook --- Controls --- Covariance --- Constraints --- Restraints --- Restraints Use M20/(X20+1)? Max Nc/Nobs 4 Start Volume 25 Select Bravais Lattices for indexing: Cubic-F Cubic-I Cubic-P Trigonal-R Trigonal-R Trigonal-R Trigonal-R Orthorhombic-F Orthorhombic-A Orthorhombic-B Orthorhombic-C Orthorhombi Tetragonal-P Orthorhombic-P Monoclinic-C -- Comments Bravais lattice 14/mmm \checkmark Space group 141/a m d \checkmark Zero offset 0.0 Refine? Modulated? Magnetic? - Limits Show hkl positions - Background --- Background -- Instrument Parameters -- Sample Parameters -- Peak List -- Index Peak List -- Unit Cells List Beflertion Lists Unit cell: a = 5.76345 c = 9.4522 vol = 313.977 Magnetic subgroup cells from Bilbao k-SUBGROUPSMAG for I 41/a m d; kvec1=(0,1/2,0), kvec2=(0,0,1): Vec Space Gp Ty Keep Uniq nConj nSup Trans Vec Pb'nia Q 4 2 1 a-2bc 0.0.0 Pb'nia Q 4 2 1 a-2bc 0.0.0 Pb'nia Q 4 2 1 a-2bc 0.1/2.0 Pb'nia Q 4 2 1 a-2bc 0.1/2.0 Pb'na Q 4 2 1 a-2bc 0.0.0 Pb'na Q 4 2 1 a-2bc 0.1/2.0 Pb'na Q 7 2 1 a2bc 1/4.1/1/4 Pm'mm ∩< Space Gp Try Keep Uniq nConj nSup Trans а b alpha beta gamma Volume Reflection Lists 5,76345 115,2689 9,45220 5,76345 115,2689 9,45220 5,76345 11,52689 9,45220 5,76345 11,52689 9,45220 5,76345 11,52689 9,45220 5,76345 11,52689 9,45220 5,76345 11,52689 9,45220 5,76345 11,52689 9,45220 5,76345 11,52689 9,45220 5,76345 11,52689 9,45220 5,76345 11,52689 9,45220 5,76345 11,52689 9,45220 5,76345 11,52689 9,45220 5,76345 11,52689 9,45220 5,76345 11,52689 9,45220 5,76345 11,52689 9,45220 5,76345 11,52689 9,45220 5,76345 11,52689 9,45220 5,76345 11,52689 9,45220 5,76345 11,52689 9,45220 5,76345 11,52689 9,45220 5,76345 11, 5.76345 11.52689 9.45220 90.000 90.000 90.000 627.05 PWDR PG3 20255-4 10K.xye 90.000 90.000 90.000 90.000 90.000 90.000 627.95 627.95 627.95 90.000 Phases 90.000 90.000 90.000 90.000 627.95 90.000 90.000 90.000 90.000 627.95 627.95 627.95 627.95 90.000 90.000 90.000 90.000 90.000 90.000 90.000 90.000 90.000 627.95 90.000 90.000 90.000 627.95 90.000 90.000 90.000 627.95 90.000 90.000 627.95 627.95 90.000 90.000 90.000 90.000 627.95 90.000 90.000 627.95 90.000 90.000 627.95 Mouse RB drag/drop to reorder Only 4 have all Mn with moment & minimal no. of Mn sites(4) – try each one

Selection creates magnetic phase; refine moments: best is Pb'na' (#4)

Argonne 스

BILBAO MCIF FILES

~1,850 structures (Gallego, et al. JAC 49, 1750-1776, 2016.)

- Tables: zero propagation vector, Type III, Type IV, 2 & 3 propagation vectors, & incommensurate magnetic structures (more later)
- All single phase with Jmol viewer to visualize; full set sym. ops. & lattice centering ops all with "time reversal" (+/- 1) operator; uses BNS system
- Thus, chemical cell & magnetic cell coincident; nonstandard settings (occasionally quite odd, cf. NiO example)
- GSAS-II uses sym ops (overrides symbol Interpretation) → draw structures & compute powder patterns, etc.
- Magnetic moments crystal axes components; Bohr magnetons. GSAS-II uses this convention.

CONCLUSIONS:

GSAS-II is a comprehensive system for all types of crystallographic analysis

GSAS-II uses a crystallographic approach to magnetic structures

Try out the tutorials (http://bit.ly/GSASIltutorials)

Home page: http://bit.ly/GSASII

www.anl.gov

Argonne

PLEASE JOIN THE GSAS-II MAILING LIST

So that we can get information to you, please subscribe to the GSAS-II mailing list, (or monitor the archives to look for announcements)

- To subscribe:
 - use https://mailman.aps.anl.gov/mailman/listinfo/GSAS-II for the Web interface
 - or send an e-mail to GSAS-II-request@mailman.aps.anl.gov
 - Use subject "subscribe" (or subscribe <password> where <password> is your preference for a mailing list login password).
- To see archives: https://mailman.aps.anl.gov/pipermail/gsas-ii/

OTHER SLIDE DECK SECTIONS

- 1. Other GSAS-II settings and parameters
- 2. GSAS-II treatment of profiles
- 3. Sequential refinement
- 4. Scripting with GSAS-II
- 5. Rigid bodies in GSAS-II
- 6. Incommensurate atomic structures
- 7. Other stuff: Small angle & reflectivity scattering
- 8. Refinement Recipes

HISTOGRAM SECTIONS

- Provides histogram fit statistics
- Label is used to show in plot (optional)
- Magnification regions used to show detail in Rietveld plot
 - Lines can be dragged when this tree item is selected
- Tick mark location can be dragged to change
- Difference plot location can be dragged

Argonne 🕰

· See tutorial "Fitting background using fixed points"

Argonne 🛆

HISTOGRAM: SAMPLE PARAMETERS

These often should be varied

- What we used to refine as a zero correction is usually sample displacement
 - Sample Y can only be refined when data extend >>120 degrees 2θ
- Absorption correlates with Uiso values
 - better set than refined
 - For TOF value is at 1Å (adjusted as needed)

Diffractometer type: Debye-Scherrer	٥
Histogram scale factor:	1.3981622
Goniometer radius (mm):	200.
Sample X displ. perp. to beam (μm):	-28.546
Sample Y displ. to beam (µm):	0.0
Sample absorption (μ ·r):	0.0
Goniometer omena:	0

 PWDR MnO2_6X5-0152 Comments Limits Background Instrument Parameter Sample Parameters Peak List

Metadata settings are here (N.B. last 3 have user-defined labels)

Goniometer omega:	0.				
Goniometer chi:	0.				
Goniometer phi:	0.				
Detector azimuth:	0.				
Clock time (s):	0.				
Sample temperature (K):	300.				
Sample pressure (MPa):	0.1				
Sample humidity (%)	0.				
Sample voltage (V)	0.				
Applied load (MN)	0.				

OTHER HISTOGRAM SECTIONS

- Peak List: used for fitting peaks without lattice constants
 - See tutorial "Fitting individual peaks & autoindexing"
 - Can be used to get starting profile terms (see tutorial "Determining Starting Profile Parameters from a Standard")

83

- Index Peak List: used to hold peaks to be used in indexing patterns
- Unit Cells List:
 - Search for units cells (autoindexing)
 - Show reflection positions generated from a unit cell and space group (or 3+1 superspace group)
- Reflection Lists:
 - Note that each phase has a separate tab
 - Menu items allow reflection plotting

PHASE/DATA TAB Contains all parameters that vary by both phase and histogram Select histogram at top; Plot different parameter sets Use flag includes phase into • • • GSAS-II project: MnO2_6X5-00016.gpx Project: MnO2_6X5-00016 General Data Atoms Draw Options Draw Atoms RB Models Map per histogram (unused histograms are Notebook Histogram data for Mn O2: PWDR MnO2_6X5-00016.0 PWDR MnO2_6X5-00016.chi Select plot type: PWDR MnO2_6X5-01809.chi Image: None Controls ignored) Covariance Constraints Mustrain Size Restraints Rigid bodies Sequential Fix: overrides atom flags Preferred orientation PWDR Mn02_6X5-000 St. proj. Inv. pole figure Eq. area Inv. pole figure PWDR Mn02_6X5-0180 Phase fraction: determines mass Phases fraction in mixtures ✓ Use Histogram: PWDR MnO2_6X5-00016.chi ? Do LeBail extraction? In sequential refinement, fix these in Mn O2 for this histogram: Phase fraction: 1.0 Size/microstrain broadening Wt. fraction: 1.000 Domain size model: isotropic 🔽 🗆 LGmix 1.0000 Reset? To be discussed: size(µm): 1.000 LGmix 1.0000 Reset? Mustrain model: Uniaxial Hydrostatic/elastic strain Unique axis, H K L: 0 0 1 Unique axis, H K L: 0 0 1 General mustrain: 59686.2 General Mustrain: 41497.7 Changes to lattice constants Hydrostatic/elastic strain: Preferred orientation Preferred orientation model March-Dollase ~ Unique axis, H K L: 0 0 1 March-Dollase ratio: 1.0 Extinction: 0.0 Babinet A: 0.0 Babinet U: 0.0

HYDROSTATIC STRAIN (LATTICE CONSTANT SHIFTS)

GSAS-II also offers terms for hydrostatic strain, D_{ij} which add to the reciprocal tensor terms, A_{ij} (For a formal definition see the lattice module documentation or the GSAS manual, profile type 5)

✓ D22 −0.00001

Ø D33 0.00001

Argonne 스

The number of terms matches the number of independent lattice parameters (1 for cubic, 4 for monoclinic,...).

Uses:

- Deviations in lattice due to pressure or temperature
- Combined refinements where lattice parameters differ due to calibration, temperature

87

Sequential fitting

TEXTURE (PREFERRED ORIENTATION) IN GSAS-II

Three different approaches

- When characterizing texture, multiple sample settings are needed (typically a TOF measurement)
 - Use the Phase/Texture tab which provides texture symmetry, plotting info,...
 - Single model used for the phase across all histograms
 - Make sure histograms have correct orientation information
- When trying to correct for [unwanted] texture in structure determination, use either March-Dollase or Spherical Harmonics in the Phase/Data section
 - March-Dollase as a single refined term, but requires an identified preferred axis

89

 Advice: turning on spherical harmonic refinement with a small number of terms (low order) will show improvement in fit if there is significant texture. Add terms until no further significant improvement is noted.

Argonne	Δ
O NATIONAL LABOR	41011

PREFERRED ORIENTATION CORRECTIONS In Phase/Data tab
 March-Dollase
Preferred orientation model March-Dollase Image: March-Dollase ratio: 1.0 Unique axis, H K L: 0 0
 Spherical Harmonics Number of terms determined by Laue class & order selection
Preferred orientation model Spherical harmonics 💙 Harmonic order: 0 💙 🗌 Refine?
Preferred orientation model Spherical harmonics V Harmonic order: 2 V Refine? Spherical harmonic coefficients: Texture index: 1.000 C(2,0) 0.0
Preferred orientation model Spherical harmonics 💙 Harmonic order: 4 💙 🗸 Refine?
Spherical harmonic coefficients: Texture index: 1.000
C(2,0) 0.0 C(4,-4) 0.0 C(4,0) 0.0 C(4,4) 0.0
Negative MRD penalty list: Select penalty hkls Zero MRD tolerance: 0.1 Argonne A

RESTRAINTS AND CONSTRAINTS: WHAT IS THE DIFFERENCE?

- A **constraint** reduces the number of parameters that are refined in a model by introducing relationships between variable parameters
 - Example: if we have two atoms sharing a site *and assume* that there are no vacancies , rather than having two occupancy parameters, o(A) and O(b) we can simplify the refinement because O(b) = 1 O(a)
 - Example: if we have a phenyl group (C_6H_5) rather than treating it as 6 independent C atoms (with 18 variable parameters), we can describe it as a set of atoms that move as a unit (a rigid body). This requires only 6 parameters (3 rotations and 3 positions).
- A restraint adds a cost function to the refinement that "pushes" the refinement towards a result computed from the variable parameters. This adds "data" to the refinement
 - Example: we can make the fit worse if the atoms in phenyl group (C_6H_5) deviate from a plane

Note that both are adding the crystallographer's prejudices into the model. With a constraint, there will be no direct evidence if this prejudice is wrong (but the fit will be worse)

The effect of the restraint will depend on how strongly it is weighted.

Sometimes "soft constraint" is used to refer to a restraint – a poor terminology choice.

Argonne 🛆

GSAS-II CONSTRAINT CLASSES

GSAS-II Shows five groupings of constraints:

- Phase (interrelating atom parameters, sample values,...)
- Histogram (interrelating instrumental profile, scale factor...)
- Specimen (Histogram*Phase) (interrelating microstrain, crystallite size...)
- Global (parameters independent of phase or histogram)
- Symmetry-Generated (on cell and atom parameters, read-only)

Rigid body constraints are implemented, but the GUI for defining them could probably be improved.

GSAS-II CONSTRAINT TYPES

Constraints come in four flavors

- Holds: This prevents a named parameter from changing, for example to keep the z value for an atom from shifting even though the coordinates are varied.
 Hold dAz for O5, phase 0
- Equivalence: This "chains together" multiple parameters so that one variable determines several parameters
 - Uiso for atom 1 = Uiso for atom 2 = 0.5 * Uiso for atom 3…
- Constraint: This defines that a set of parameters must add up to a constant
 Frac(atom 1) + Frac(atom 2) + Frac(atom 3) = 1.0
 - In this example, three degrees of freedom have been lowered to two via this constraint
- New Variable:
 - Frac for atom 1 + Frac for atom 2 + Frac for atom 3 = new variable
 - This will allow definition of distortion mode(s), based on representational analysis

These constraints can be combined and mixed as long as the equations are internally consistent. Example:

- Frac(atom 1) + Frac(atom 2) + Frac(atom 3) = 1.0
- Frac(atom 1) = Frac(atom 2)
 - This leaves a single degree of freedom

Argonne 스

EDITING CONSTRAINT

After constraint is created

Use Edit button to change multipliers or total

			00/1		10,000	in to top	•	-			_
Project: YAG.gpx		Phase Histogram/Phase Histogram Global Sym-Generated									
Notebook		Edit [Delete	?	EQUIV	0::AU	so:1 = 1	1.000*0:	:AUiso:2		
Covariance		Edit [Delete	?	EQUIV	0::AU	so:3 = 1	1.000*0:	:AUiso:4		
		Edit D	Delete	?	CONST	1.000	*0::Afrad	c:1 + 1.0	000*0::Afrac:2	= 1.0	
Restraints Rigid bodies		Edit	Delete	?	CONST	1.000	*0::Afrac	c:4 + 1.0	000*0::Afrac:3	= 1.0	
 PWDR garnet. 	raw Bar										
Comments Limits		Edit Constraint									
Backgrour	Edit value for	each ter	m in co	nstan	t constra	aint sum	l .				
	0::Afrac:1 *	1.		Ato	m Fe(2)	in Garne	et: Atomic	c site frac	tion parameter		
	0::Afrac:2 *	1.		Ato	m Al(3) i	n Garne	t: Atomic	site frac	tion parameter		
,	fixed value =	1.									
			ОК				Canc	el			

GSAS-II RESTRAINTS

GSAS-II allows restraints to be placed on interatomic distances and angles, most commonly used for bonded atoms.

- A target value and uncertainty is supplied for each noted distance/angle
- An overall weight is supplied for all distance and all angle restraints
- The goodness of fit gets worse as the distance or angle deviates from the target value supplied in the restraint
- Note that since there may be only a handful of restraints and 10⁵ powder data points, a very large weight may be needed in the initial stages of a refinement so that the restraints count for a significant part of the GOF

Chemical compositional restraints can be used to "push" a refinement to match a chemical analysis result (for example an overall composition) or charge balance,...

Other types of restraints (plane and chiral) are most commonly used for biomolecules.

Generalized (DIY) allows any arbitrary function of parameters to be defined

PEAK BROADENING: INSTRUMENTAL CONTRIBUTIONS

Background

Resolution of a CW neutron instrument (Cagliotti via Rietveld) is:

 $FWHM^2 = U \tan^2\theta + V \tan\theta + W.$

 Cagliotti, G., Paoletti, A., and Ricci, F. P. (1958). "Choice of collimators for a crystal spectrometer for neutron diffraction," *Nucl.Instrum.* 3, 223.

Note that a better choice would have been

 $FWHM^2 = U \tan^2(\theta - \theta_m) + V \tan(\theta - \theta_m) + W$

Where θ_m is the monochromator setting angle (E. Prince)

In x-ray instruments there is usually some Cauchy (Lorentzian) broadening FWHM = $X / \cos\theta + Y \tan\theta$

99

Argonne 🛆

UNDERSTANDING SAMPLE EFFECTS (I): CRYSTALLITE (SIZE) BROADENING

The Fourier transform (FT) from an *infinite* array of regularly spaced objects is an array of delta functions.

The FT from a *finite* length array is broadened; all maxima are broadened equally in Q (or d).

UNDERSTANDING SAMPLE EFFECTS (II): MICROSTRAIN (RESIDUAL STRESS) BROADENING

Strain & stress changes the lattice constants of a material

In a material with residual stress

some crystallites are under tension (real space larger lattice, reciprocal space smaller),
 others are compressed

Shift of peak \approx Q, broadening increases linearly with Q (Δ Q/Q or Δ d/d constant)

AXIAL DIVERGENCE IN GSAS-II

Work of Finger, Cox & Jephcoat, based on derivations by van Laar & Yelon

GSAS-II PROFILE MODEL

Isolate sample effects from instrument

Design: instrument parameters (one set for every histogram) are determined once (with a standard) and are never varied for user samples

- Ideal: beamline scientist provides an instrument parameter file
- DIY: fit profile terms to a standard (see tutorial)
- Worst case: fit for histogram, but limited size/microstrain characterization
- When a file is not available, use "Cancel" to get access to default parameter sets

Why: When instrumental terms are determined microstrain & crystallite broadening can be varied directly

 microstrain & crystallite broadening terms for each dataset in each phase with choice of varying levels of complexity

106

- Can you use the old-fashioned approach of refining instrumental terms for each dataset?
 - Yes, but we wish you would not

RELATIONS BETWEEN GSAS(-II) AND FULLPROF CW PROFILE TERMS

From Kaduk, J. A., and Reid, J. (2011). "Typical values of Rietveld instrument profile coefficients," *Powder Diffraction* 26, 88-93.

GU(GSAS) = 1803.4U(FULLPROF),	(13)
GV(GSAS) = 1803.4V(FULLPROF),	(14)
GW(GSAS) = 1803.4W(FULLPROF),	(15)
GP(GSAS) = 1803.4IG(FULLPROF),	(16)
LX(GSAS) = 100Y(FULLPROF),	(17)
LY(GSAS) = 100X(FULLPROF),	(18)
S/L(GSAS) = S L(FULLPROF),	(19)
H/L(GSAS) = D L(FULLPROF).	(20)
108	

SAMPLE BROADENING TREATMENT IN GSAS-II

Samples broaden diffraction peaks in two possible ways, microstrain (aka residual stress) and crystallite size broadening. For each of these GSAS-II offers 3 levels of complexity

- Isotropic broadening: one value (+LGmix)
- Uniaxial broadening: two values (+LGmix) and a reciprocal space direction (set intelligently based on cell type)
- Generalized:
 - Size is always 6 terms describing an ellipsoid (constraints may be needed)
 - Microstrain: 2 to 15 terms depending on cell

LGmix is usually 1, for Lorentzian crystallite size (& μ strain) broadening (unusual case) can be 0 for Gaussian or a value between 0 & 1 for a mix of the two.

109

ANISOTROPIC BROADENING: BROADENING CAN BE DIRECTION-DEPENDENT

Crystallite broadening will vary with *hkl* when crystallites have smaller average dimensions in certain crystallographic directions, broadening reflections by class

Microstrain broadening will vary with *hkl* if a material is more stiff (harder) in some crystallographic directions than others, again broadening reflections by class

 $\boldsymbol{\sigma}^{2}(\boldsymbol{M}_{hkl}) = \sum_{HKl} S_{HKL} h^{H} k^{K} l^{L} , H + K + L = 4$

Cubic – m3m – 2 terms $\sigma^{2}(M_{bbl}) = S_{400}(h^{4} + k^{4} + l^{4}) + 3S_{220}(h^{2}k^{2} + h^{2}l^{2} + k^{2}l^{2})$

General expression – triclinic – 15 terms

$$\begin{split} \sigma^{2}(M_{_{hkl}}) &= S_{_{400}}h^{4} + S_{_{040}}k^{4} + S_{_{004}}l^{4} + 3\bigl(S_{_{220}}h^{2}k^{2} + S_{_{202}}h^{2}l^{2} + S_{_{022}}k^{2}l^{2}\bigr) + \\ & 2\bigl(S_{_{310}}h^{3}k + S_{_{103}}hl^{3} + S_{_{031}}k^{3}l + S_{_{130}}hk^{3} + S_{_{301}}h^{3}l + S_{_{013}}kl^{3}\bigr) + \\ & 4\bigl(S_{_{21}},h^{2}kl + S_{_{12}},hk^{2}l + S_{_{112}}hkl^{2}\bigr) \end{split}$$

Argonne 스

Argonne 스

CRYSTALLITE SIZE	E BROAD	ENING IN	GSAS-II		
		000	GSAS-II data d	display	
Found in phase/data tab	þ	General Data A Histogram data for CuC	toms Draw Options Cr2O4:	Draw Atoms	RB Models Map
When instrumental parameters in microns:	s accurate (fro	m standard) the	size broadeni	ng can be	read directly
Isotropic size	Size model: iso Cryst. size(µr	n): 2.54728	Gmix 1.0000	Re	set?
Uniaxial size broadening (in plane and out).	nique axis, H K ize model: [uni] Equatorial size	L: 0 0 1 axial \$ 0 L(e(µm): 2.54728	Gmix 1.0000	□ Re ize(µm): 1.2	25et? 20000
For Experts only:					
Generalized size broadening, as six term tensor (complex, see plot)	Size model: S11 1.000 S12 0.000	ellipsoidal	LGmix 1.0000 1.000 0.000	S33 1.0 S23 0.0	Reset?
		111			Argonne 🛆

	000		GSAS-II data d	isplay		
	 Gener Histogram 	al Data Atoms	Draw Options	Draw Atoms	RB Models	N
When instrumental parameter directly. Values are $\Delta d/d \times 10^{\circ}$	ers are accurate (fit from stan 0^6 (= $\Delta Q/Q \times 10^6$) (no units)	dard) the sti	rain broade	ening can l	oe read	
N.B. If elastic strain cons	tant is known, microstrain ca	n be convert	ted to a for	се		
Isotropic microstrain	Mustrain model: isotropic microstrain: 1799.7	‡] 🗆 LGmi	x 1.0000	C R	eset?	
Uniaxial microstrain broadening (in plane and out).	Mustrain model: uniaxial Unique axis, H K L: 0 1 0 Equatorial mustrain: 1799.7	\$ CLGmi	ix 1.0000 Axial mustra	in: 964.6	eset?	
Microstrain broadening can also be treated with the Stephens model (# of terms depends on symmetry)	Mustrain model: generalized S400 0.01000 S04 S220 0.01000 S20	 LGmi 0.01000 2.0.01000 	x 1.0000	04 0.01000 22 0.01000	eset?	
Anisotropic microstrain Peak Broadening in P	n: Stephens, P. W. (1999). "Ph owder Diffraction." <u>Journal of J</u>	enomenonol Applied Cryst	ogical Mod tallography	el of Aniso 32 (2): 2&f		

USING BROADENING IN GSAS-II

How to use:

- Always start with isotropic. Do not vary both size and microstrain if the data range is small.
- Which one is most significant? Can the other be removed without degrading the fit?
 Small microstrain or big small size values are insignificant
- If you suspect more terms are needed, try uniaxial.
 - · Does fit improve significantly?
 - For higher symmetry crystal systems the direction is fixed (e.g. 001 for c-unique)
- Generalized (Stephens) microstrain usually refines well and when needed produces significant improvement in fit
- Generalized (ellipsoidal) size broadening is rare and is not recommended for highsymmetry materials

113

Argonne 📤

POWDER DIFFRACTION MEASUREMENTS CAN BE QUICK AND EASY (OR HARD)

- With synchrotrons and area detectors, full patterns can be collected in a small fraction of a second.
- Neutron and high resolution synchrotron patterns can be collected in minutes
- This allows for parametric (+ in situ and operando) diffraction studies, where large numbers of diffraction patterns are collected as a function of:
 - Temperature
 - Pressure
 - Chemical composition
 - Electrochemical potential
 - Chemical reaction
 - Cycling (e.g. electrochemical)
- Manual analysis of such data in serial fashion is very time consuming

SEQUENTIAL REFINEMENT IN GSAS-II

GSAS-II offers three modes for fitting to a set of datasets.

- **Combined refinement**: All phases and parameters are adjusted to best fit all the datasets.
 - Any number of phases, any number of datasets; phase parameters will be the same for all datasets (but note use of D_{ij} allows lattice parameters to differ by dataset)
 - Good for multiple measurements under a single set of conditions (or very similar conditions)
- Sequential refinement: Each dataset is fit, one-at-a-time, to any number of phases.
 - All parameters are allowed to vary to best-fit each dataset in turn (use of D_{ij} required).

Good where there are wide changes in atom positions, phase transformations, etc.
 Sequential Refinement allows for treatment of a large number of datasets in a single project file and with automation.

• Scripting (new): allows for algorithmic adaptation; parallelization,... See tutorial or paper.

O'Donnell, J. H., Dreele, R. B. V., Chan, M. K. Y., and Toby, B. H. (**2018**). "A Scripting Interface for GSAS-II," Journal of Applied Crystallography **51**, 1244-1250.

117

Argonne 🛆

SEQUENTIAL REFINEMENT CONCEPT

Concept: set up a refinement on the first dataset.

- Repeat that refinement on subsequent datasets varying the same parameters
- When there are changes in the sample that require extra parameters (one example, appearance of a new phase), one can add new parameters for subsequent refinements
- Optional: copy the results from fitting each dataset as the starting point for fitting next (usually a good idea).
 - Only possible when parameters are the same for all datasets in the series
- It is possible to do initial fitting with a subset of patterns in the project file and then go on to a different subset of patterns,...
 - In the end, conduct a sequential fit over all subsets
- Sequential refinements produce a convenient table of results that can be used for plotting of secondary fitting.

Note: automation does not lift the requirement that you must think about what you are doing and carefully review results from your fits.

NOTES ON LATTICE CONSTANTS

- Cell lengths are associated with phases, but are expected to change in a parametric study
 - For each histogram, there are a set of hydrostatic strain tensors; these modify the cell parameters
 - These D_{ij} values must be refined in a sequential fit
- This means one can do a combined fit with lattice constants differing by dataset (histogram) (but all coordinates, Uiso values etc. will be the same)
- One cannot refine unit cell parameters and D_{ij} values for a phase at the same time.

		Phase Data for Cu	Cr2O4		
◀ General	Data Atoms	Draw Options	Draw Atoms	RB Models	Ma
Histogram da	ata for CuCr2O4	: Calcad alat turn			
PWDR OH PWDR OH PWDR OH PWDR OH PWDR OH PWDR OH V Use Histo	OO.fxye Bank 1 O4.fxye Bank 1 O9.fxye Bank 1 14.fxye Bank 1 19.fxye Bank 1 22.fxye Bank 1 22.fxye Bank 1 ogram: PWDR OF action: 15.5135	None Mustrain Size Preferred o Inv. pole fig	rientation ure		
Domain size	model: isotrop	ic ᅌ 🛛 LGmi	x 1.0000	Reset?	
 ✓ size(µm): Mustrain mo Unique axis, ✓ Equatoria 	del: uniaxial H K L: 0 1 0 I mustrain: 1819	LGmix	1.0000 Il mustrain: 976	Reset?	
Hydrostatic/ D11 5.1 Preferred ori March-Do	elastic strain: 6e-09	D22 -5.97e-09 March-Dollase 00 Unique	✓ D33 -	1.94e-08 0 1]

A FEW WAYS TO PERFORM A SEQUENTIAL FIT

- Fit a data set in a project as a normal refinement, then add more datasets and switch to a sequential refinement.
- Start with all datasets in a project, select only one dataset to fit sequentially, then add more (all?) datasets to range sequential fit.
- Use a separate project to fit selected dataset(s) then set up a sequential refinement

EQUATION OF STATE (PARAMETRIC) FITTING

- New parameters may be described as functions of existing variables and values (Pseudo Vars)
 - Function is defined in Python allowing completely arbitrary, non-linear expressions
 - Covariance is properly used to estimate uncertainties on pseudo vars
- Variables and pseudo vars may be plotted
- Arbitrary parametric functions may be fit to variables and pseudo vars
 - Uncertainties properly used in weighting
 - Fit values may be shared across multiple parametric functions

000				Expre	ssion Editor	
		Edit	the fe	ormula for t	this minimiza	tion function
	: 0)::c = b i	ft <	= t0 else b	+ c * (1-(t-t0))**d)
Validate) F	xpres	sion evalu	lates	to: 8.5118	Variable "0:	c" = 8.53650548203
	Assic	nment o	fvari	ables to lab	bels:	
	label	varib. ty selectio	pe n	variable	value	refine flag
	b	Free	\$	b_2	8.5118	
	c	Free	\$	c_1	2.432	
	d	Free	•	d	-0.025	
	t		\$	Temperatu	ure 6.778	
	tO	Free	•	t0_1	120.	
Fit						Cancel OK

501110

MUCH OF GSAS-II CAN BE ACCESSED FROM PYTHON SCRIPTS

All features in GSAS-II are available from the GUI; increasing amounts of the capabilities are designed to be used from Python scripts

The GSASIIscriptable module provides access to key parts of the GSAS-II code

Example:

 Script to simulate a diffraction pattern

```
import os, sys
sys.path.insert(0,'/Users/toby/software/G2/GSASII')
import GSASIIscriptable as G2sc
datadir = "/Users/toby/software/G2/Tutorials/PythonScript/data"
PathWrap = lambda fil: os.path.join(datadir,fil)
gpx = G2sc.G2Project(filename='PbSO4sim.gpx') # create a project
phase0 = gpx.add_phase(PathWrap("PbS04-Wyckoff.cif"),
         phasename="PbS04",fmthint='CIF') # add a phase to the project
# add a simulated histogram and link it to the previous phase(s)
hist1 = gpx.add_simulated_powder_histogram("PbS04 simulation",
            PathWrap("inst_dla.prm"),5.,120.,Npoints=1000,
            phases=gpx.phases(),scale=500000.)
gpx.do_refinements() # calculate pattern
gpx.save()
# save results
gpx.histogram(0).Export('PbSO4data','.csv','hist') # data
gpx.histogram(0).Export('PbS04refl','.csv','refl') # reflections
```

SCRIPTING CAPABILITIES

Current capabilities

- Refinements & sequential fits
- Pattern simulation
- Peak fitting
- Image integration & PDF computation
- Image calibration

Other routines are designed to be incorporated into other programs (GSASIIIattice and GSASIIspc for lattice and space group computations).

125

Argonne 🛆

DOCUMENTATION LISTS ALL TOP-LEVEL ROUTINES

Level of detail varies

GSASIIlattice: Unit cells

Perform lattice-related computations

Note that g is the reciprocal lattice tensor, and G is its inverse, $G = g^{-1}$, where

	$\int a^2$	$ab\cos\gamma$	$ac\cos\beta$
G =	$ab\cos\gamma$	b^2	$bc\cos\alpha$
	$ac\cos\beta$	$bc\cos\alpha$	c^2

The "A tensor" terms are defined as $A = (G_{11} \quad G_{22} \quad G_{33} \quad 2G_{12} \quad 2G_{13} \quad 2G_{23})$ and A can be used in this fashion: $d^* = \sqrt{A_1h^2 + A_2k^2 + A_3l^2 + A_4hk + A_5hl + A_6kl}$, where d is the d-spacing, and d^* is the reciprocal lattice spacing, $Q = 2\pi d^* = 2\pi/d$

GSAS	IIlattice. A2G Fill real & recip	mat(A, in procal met	<i>iverse=</i> tric tens	<i>True</i>) or (G) from A.				[source]	
	Parameters:	• A [G11,0 • invers	- G22,G33 Se (bool	reciprocal 3,2*G12,2*G13) – if True retur real (a) metric	metric ,2*G23] n both G and tensors (list	tensor d g; else just	elements G	as	
GSAS	IIIattice. A2c	ell(A)	ar (a) a	real (g) metho			y ono arrays)	[source]	
	Compute unit o	cell consta	ants from	m A					
	Parameters: Returns:	A – [G11 a b c alp	,G22,G	33,2*G12,2*G	13,2*G23] G rees) - lattice	- reciprocal r	metric tensor		

WHY USE CONSTRAINTS?

Reason #1. Structure refinement

Frequently, particularly with powder diffraction, one does not have enough data to independently determine the position of every non-hydrogen atom at the expected level of accuracy.

Use of constraints allows a crystallographic model to be simplified to be consistent with what has been measured.

Example: the 6 C atoms in a phenyl group (C_6H_5) offer 18 degrees of freedom, but if the group's internal geometry is fixed, only 6 (or less) degrees need to be treated, plus the fit structure will be more reasonable since the internal geometry of a phenyl group is well-known and does not change.

Argonne 스

Note: when too many parameters are varied, the model will be "overfit." Unreasonable results are obtained because the data are not sufficient to independently determine all the terms that are being fit. *"Fitting to noise."*

131

WHY USE RIGID BODIES?

Reason #2. Structure solution

- When a structure must be solved, the complexity of that problem can be huge if every atom is considered as an independent entity. However, often large portions of the structure have known internal geometries and can be treated as groups where the group has only an unknown location and/or orientation. Sometimes a few torsional parameters may unknown and can also be included.
- Rigid bodies can be used with the Monte-Carlo/Simulated Annealing structure solution module (see the MC/SA tab in the Phase panel.)

◀ Data At	oms D	Draw Opti	ions Dr	aw Atoms	RB M	odels	Map pea	ks MC/	SA F	RMC	Textu		
VIC/SA models:													
March-Do	llase rati	io: 1.0		Range:	0.800 1	.200	Unique a	axis, H K L	0	01			
halfBiPy(1)													
		_			_			_					
Residue: half	BiPy(1):	x:	0.0		_ у:	0.0		Z:	0.0				
Use mol.	center?	Range:	0.000	1.000	Range:	0.000	1.000	Range:	0.000	0 1.00	0		
Oa:	180.00000 O		Oi,Oj,Ok:	Ok: 0.000 0.0		000 1. Vary?		· · · · · · · · · · · · · · · · · · ·					
Range: Oa:	a: 0.000 360.000 C		Oi,Oj,Ok:	-1.000 1.000		-1.000 1.000		-1.000 1.00					
Torsions:													
No MC/SA re:	sults:												

Argonne 🛆

WHAT ARE RIGID BODIES?

Rigid bodies require two sets of axes.

- 1. the usual set of crystallographic coordinates (along a, b & c) and
- 2. Cartesian axes, internal to the body

Rigid body parameters set the relation of these coordinate systems.

- Atom positions inside rigid bodies are specified in Cartesian coordinates, relative to an origin.
- Rigid bodies will be placed inside a crystal structure with *at most* 6 degrees of freedom externally: 3 coordinates for the origin location and 3 orientation parameters. Symmetry may fix some of these.
- Group motion (TLS) terms for rigid bodies can be used generate to treat atomic displacement parameters ("thermal motion") for the atoms in the group.
- GSAS-II allows additional internal degrees of freedom in rigid bodies:
 - 1. Vector rigid bodies: offers grouped bond lengths
 - 2. Residue rigid bodies: offers torsion angles

133

Argonne 合

HOW DOES GSAS-II IMPLEMENT RIGID BODIES?

Use of rigid bodies in GSAS-II is a two-step process.

- First the rigid body is defined
 - Note that GSAS-II offers two types of rigid bodies (vector and residue)
 - Any number of bodies of either type may be defined
- Second, the rigid body is inserted into a structure
 - This creates a mapping from atoms in the structure and those in the body
 - Atoms may be added to the structure as the body is inserted
 - The atoms in the structure need not be in the same order as in the rigid body
 - A rigid body may be inserted multiple times in one or more phases

Once a body is inserted, its position, orientation, overall displacement factors (aka thermal motion) and occupancy factor may be refined. Residue bodies have optional torsions that can be refined; vector bodies have optional length parameters that can be refined.

GSAS-II VECTOR RIGID BODIES

Option 1: Named from the concept of adding vectors

- Vector rigid bodies have fixed geometries, but optionally allow for one or more scaling parameters
 - The scaling parameters can be refined (but can be fixed).
- The scaling parameters determine size factors for the rigid body and typically define bond lengths.
- In vector rigid body a set of atom positions (r_j) are generated from coordinates v_{j,k}

$$\mathbf{r}_{j} = \mathbf{t}_{1} \cdot \mathbf{v}_{j,1} + \mathbf{t}_{2} \cdot \mathbf{v}_{j,2} + \dots$$

or equivalently

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	
$\begin{vmatrix} \overline{r}_3 \\ \cdot \end{vmatrix} = t_1 \begin{vmatrix} \overline{v}3,1 \\ \cdot \end{vmatrix} + t_2 \begin{vmatrix} \overline{v}3,2 \\ \cdot \end{vmatrix} + \cdot$	
$ = t_1 + t_2 + t_2 $	
	•
$\bar{r}_n \rfloor \qquad \lfloor \bar{v}n, 1 \rfloor \qquad \lfloor \bar{v}n, 2 \rfloor$	

135

Argonne 🛆

VECTOR RIGID BODIES: CONCEPT A sum of vectors provides the position of each atom A concept that explains both the name and reasoning that helps understand how vector bodies work is to consider that each atom position is generated relative to the origin from the sum of a scaled set of vectors: $\vec{r_j} = t_1 \overrightarrow{v_{j,1}} + t_2 \overrightarrow{v_{j,2}} + t_3 \overrightarrow{v_{j,3}} + \dots$ $t_3 \overline{v_{i,3}}$ $\bar{v}_{1,1}$ $\bar{v}1.2$ $\bar{v}2,1$ $= t_1 \begin{vmatrix} \bar{v}2,1 \\ \bar{v}3,1 \\ . \\ . \end{vmatrix} + t_2 \begin{vmatrix} \bar{v}2,2 \\ \bar{v}3,2 \\ . \\ . \end{vmatrix} + \dots$ $\bar{v}2.2$ \bar{r}_2 \bar{r}_3 . . $t_2 \overline{v_{i,2}}$ $t_1 \overrightarrow{v_{i,1}}$ $\overline{v}n,1$ $\bar{v}n,2$ (0,0,0)136 Argonne 스

FICTITIOUS VECTOR RB EXAMPLE

Vector example: option 2

• With two matrices we can make A-A and A-B lengths into separate variables:

GSAS-II RESIDUE RIGID BODIES

Type 2. Name from use of "residues" in protein crystallography

The dimensions of a residue rigid body cannot change, but there can be torsion angles defined, which allow sections of the molecule to reposition. There can be multiple torsions in a rigid body.

Example: this biphenyl $[(C_6H_5)_2]$ molecule has one potential *internal* degree of freedom which is the torsional angle on the C-C bond joining the two rings (atoms 11 & 12 in diagram)

Residue coordinates must be in Ångstroms

When defining torsions, GSAS-II needs two atoms to be defined: an origin and a pivot atom. Other atoms bonded to the pivot are called riders.

Torsion origin: 11, pivot 12, riders 13 & 21 (or equivalently, origin: 12, pivot: 11, riders: 1 & 9)

http://erg.biophys.msu.ru/tiki/tiki-index.php?page=Ab+initio+energy+scan

Argonne 🛆

METHODS TO GENERATE RIGID BODY COORDINATES

There are several approaches for generating rigid body coordinates.

- 1. For simple 2-D bodies, the object can sketched out on paper and the coordinates can be derived from simple geometry.
- 2. A molecular editor, force-field or quantum code* can be used to build and minimize the approximate (gas phase) structure for a molecule or fragment. Cartesian coordinates are then exported.
 - The open source Avogadro program is a good choice (<u>https://sourceforge.net/projects/avogadro/</u>); write XYZ output.
- 3. If you have a crystal structure (for example, from CSD) containing the rigid body you wish to use, those atoms can be extracted into a GSAS-II rigid body.
 - You can extract atoms from a structure and then optimize in Avogadro

* Note that GSAS-II will not read a Z-matrix file (which is commonly used for simulations) but OpenBabel (http://openbabel.org) will convert this to XYZ output format.

141

SYMMETRY AND RIGID BODIES

Before defining a rigid body, it is important to consider how those atoms will appear in the model. Symmetry can place constraints on the rigid body origin and axial orientation <u>in</u> <u>Cartesian space</u> and dictate how the RB is constructed.

- Is there internal symmetry to the rigid body? If so, is that symmetry enforced by the space group symmetry in the lattice?
 - For the example that follows, we will have a rigid body on a center of symmetry (-1) site. This means that the Cartesian origin must be placed at the crystallographic site where the -1 is located.
 - More details on symmetry and rigid bodies will be covered later
- Note that a single rigid body may be inserted in multiple locations in a single structure, but if the moiety is found in different symmetry environments, the body might need to be defined with more than one description.

If TLS parameters will be refined, it is best to put the origin at the center of mass

Argonne 스

4-4'-BIPYRIDINE (BIPYRIDINE)

Care required: this is on a special position

- The asymmetric unit is drawn as stick figure & labeled (symmetry-generated atoms are ball-and-stick)
- Note that there is a center of symmetry (1) between C10 and its symmetry-twin.
- Examination of plot or coordinates identifies the 1 location as (0,¹/₂,1)

To preserve the symmetry, the origin for the rigid body must be at the midpoint between C10 and C10'. That will be placed at $(0,\frac{1}{2},1)$ in crystal coordinates.

CREATE THE BIPYRIDINE RIGID BODY (1)

Work can be done in a new project, but a phase is needed to create the "Rigid Bodies" tree entry

In this example we will use a publication as the source of coordinates for the rigid body.

- Note that because we will need both C10 and C10' to establish the origin, the structure must be expanded to provide both atoms before it is read in.
- From either "Vector rigid bodies" or "Residue rigid bodies" use the Edit Vector Body/Extract from file menu command
- Select a file format, in this case CIF and then find the CIF file and select it
 All atoms are brought into the "Rigid body importer" selector and are plotted.

Loaded Data:	Vector rigid bo	dies Residue rigid bodie	s Rigid body importer
Notebook Controls Covariance	Select atoms to	import Name Filter:	
Constraints	🗹 0) Co1		
restraints	🗹 1) C1		
Rigid bodies	🖌 🔽 2) C2		
	🗹 3) C3		
	🔽 4) H1		

CREATE THE BIPYRIDINE RIGID BODY (2)

Select the atoms needed to build the rigid body

- In the Atom selector, unselect all atoms, and select only the atoms from one ring plus one atom on the other ring.
 - Note that selected atoms are brightly colored while unselected atoms appear much darker.

CREATE THE BIPYRIDINE RIGID BODY (3)

For convenience (but not required) we will define the axes orientation

Once the atoms are selected, a new table with Cartesian coordinates and a plot of the atoms is shown.

Vector rigid bodies	Resi	due rigid b	odies	Rigid bo	ody im	porter				
eorder atoms by drag	ging		Label	Select	Туре	x	У	z		0
Set All		1	C7		с	1.34944	0.56226	0.19498		1 ^{8:H}
Toggle		2	H3		н	2.12399	1.06436	0.31463		
		3	C8		С	0.14812	1.23005	0.07905		- NC
orient using selecte	d	4	H4		н	0.12968	2.15793	0.12587		
oms		5	C9		С	-1.02044	0.53615	-0.10452	9:N	
Set origin		6	C10		С	-0.90795	-0.83659	-0.15134		
Place in plane xy	0	7	H5		н	-1.66634	-1.36179	-0.26579		
Define as x	0	8	C11	\checkmark	С	0.33816	-1.43409	-0.02946	<u>.</u>	
	-	9	H6		н	0.38294	-2.36197	-0.07107		
e selected atoms to		10	N3		N	1.45875	-0.76529	0.14296	1:H	
eate		11	C9D	\checkmark	С	-2.33636	1.20897	-0.23532		T 2:0
a Vector Body										
a Residue Body										U _{S:E}
Cancel										0.1
							148			

CREATE THE BIPYRIDINE RIGID BODY (4)

Put atoms in plane (optional)

With all atoms selected, click on the place in plane, with "xy" selected adjacent. Note that the z values are nearly zero. There is no visible change in the plot except that the cross hairs rotate, showing the different axes directions.

CREATE THE BIPYRIDINE RIGID BODY (5)

Set up the axes (optional)

We will make the x-axis run from the N atom to one of the C atoms by unselecting the N atom and then toggle (so that it is the only selected atom). Temporarily make that atom the origin by pressing the "Set origin" button. Note that the cross hairs move to the N atom and its coordinates are now (0,0,0).

Then unselect the N atom and select the C atom and press "define as" with "x" selected. The body rotates and the selected C atom is name at (x, 0, 0)

now at (x,u,u)		Label	Select	Туре	x	У	z
Reorder atoms by dragging	1	C7		с	0.70648	-1.13046	0.00170
	2	H3		н	0.24528	-1.93893	0.00025
Set All	3	C8		С	2.08541	-1.16375	0.00387
loggle	4	H4		н	2.52715	-1.98126	0.00823
Reprient using selected	5	C9		С	2.81094	0.00000	-0.00000
atoms	6	C10		С	2.08028	1.16849	0.00522
Set origin	7	H5		н	2.51608	1.98954	0.01093
Place in plane xy	8	C11		С	0.69387	1.11861	0.00003
Define as x	9	H6		н	0 22844	1,92363	-0.00244
	10	N3		N	0.00000	0.00000	0.00000
	11	C9D		С	4.29458	0.01585	0.00141

CREATE THE BIPYRIDINE RIGID BODY (6)

<u>Required</u>: place origin on center of symmetry

The midpoint between the two rings <u>must</u> be the location of the center of symmetry.

Select the two C atoms that join the two rings. Then press the "Set origin" button to put the origin at the average of the two selected positions.

Reorder atoms by dragging		Label	Select	Туре	х	У	z	
Set All	1	C7		С	-2.84628	-1.13838	0.00099	
Toggle	2	H3		н	-3.30748	-1.94686	-0.00046	
	3	C8		С	-1.46735	-1.17167	0.00316	
Reorient using selected	4	H4		н	-1.02561	-1.98919	0.00753	
Cat aviaia	5	C9		С	-0.74182	-0.00793	-0.00071	
Diago in plana and	6	C10		С	-1.47248	1.16056	0.00452	
Place in plane xy	7	H5		н	-1.03668	1.98162	0.01023	
Deline as x	8	C11		С	-2.85889	1.11068	-0.00067	
Jse selected atoms to	9	H6		н	-3.32432	1.91571	-0.00315	
create	10	N3		Ν	-3.55276	-0.00793	-0.00071	
a Vector Body	11	C9D		С	0.74182	0.00793	0.00071	Argon
			\mathbf{V}					Alborn

CREATE THE BIPYRIDINE RIGID BODY (7)

Export all atoms in the ring, but not the "extra" atom

We want to export all but the last C atom (C11). (This can be done simply by unselect the 4th atom and press toggle, highlighting all atoms in the one ring.)

Then create a residue rigid body by pressing the "a Residue Body" button.

Change the name of the body

If you will use the body in a different project, use "Edit Rigid Body"/"Save rigid body" to write a file.

Note: while we will use a residue body here, since there are no torsions for this body, a vector rigid body would work just as well.

Place in plane xy Define as x Use selected atoms to

create ...

Vector ri	gid bodie	s F	tesidue rigid	bodies			
Residue na	ame: hal	f-bipy	Plot	Delete	Strip H-atoms	;	
Orientation	n referenc	e non-	-H atoms A-B	-C: C7	🖌 НЗ	C8	
	Name	Туре	Cart x	Cart y	Cart z		
0	C7	с	-2.84628	-1.13838	0.00099		
1	H3	н	-3.30748	-1.94686	-0.00046		
2	C8	С	-1.46735	-1.17167	0.00316		
3	H4	н	-1.02561	-1.98919	0.00753		
4	C9	С	-0.74182	-0.00793	-0.00071		
5	C10	С	-1.47248	1.16056	0.00452		
6	H5	н	-1.03668	1.98162	0.01023		
7	C11	С	-2.85889	1.11068	-0.00067		
8	H6	н	-3.32432	1.91571	-0.00315		
9	N3	N	-3.55276	-0.00793	-0.00071		

INSERT THE 2,3-PYRAZINEDICARBOXYLIC ACID (PYRAZINE)

Note: not on a special position

The asymmetric unit structure has been drawn here

- Pyrazine asymmetric unit drawn as stick figure & labeled
- Note that the ion is planar with the exception of the 4 oxygens
 - The O atoms will need torsions to position them

There is no internal symmetry here so the origin of the body can be arbitrary

OH

OH

CREATE THE PYRAZINE RIGID BODY (1)

Import the CIF file again, but select different atoms

Repeating the previous process: use "Edit Vector Body"/"Extract from file" menu command again

- Select a file format (in this case CIF) and then find the CIF file and select it. Then select the 6 C atoms, 2 N and 2 H atoms and 4 O atoms in the pyrazine ion.
 - To see, it will help to reorient the 3D display by dragging with the mouse left and

CREATE THE PYRAZINE RIGID BODY (2)

Place atoms in a plane and redefine the origin

Unselect the O atoms, since they are not planar and press "Set origin" and "Place in plane" buttons (with "xy" selected)

Select the two C atoms and press "Define as" (with "x" selected) to place the x-axis between the selected atoms

Vector rigid bodies	Residue rigid b	odies	Rigid bo	ody im	porter		
Reorder atoms by dragg	ing	Label	Select	Туре	×	У	z
Set All	1	C1	 Image: A set of the set of the	с	1.06807	-0.69414	-0.00846
Toggle	2	C2	<	С	1.07052	0.69414	0.00846
	3	C3		С	-1.21613	0.68002	-0.01733
Reorient using selected	4	H1		н	-2.02415	1.13756	-0.08688
atoms	5	C4		С	-1.23793	-0.69157	0.03080
Set origin	6	H2		н	-2.05011	-1.14387	0.03336
Place in plane xy	≎ 7	C5		С	2.27923	-1.61033	-0.10121
Define as x 0	8	C6		С	2.29003	1.62459	0.03609
	9	N1		N	-0.08963	-1.37842	0.07570
Use selected atoms to	10	N2		N	-0.08990	1.38202	0.02947
create	11	01		0	2.07147	-2.82652	0.12454
a Vector Body	12	02		0	3.38051	-1.14177	-0.43040
a Residue Body	13	03		0	3.09571	1.61361	-0.92593
a reconder boay	14	04		0	2.34487	2.42287	0.98654

Note that these origin & axes settings are for convenience in viewing and understanding the body, but are not required.

Argonne 스

CREATE THE PYRAZINE RIGID BODY (3)

156

Create body & define carboxylic torsions

Since this ion needs torsional rotation for the carboxylic groups, a residue rigid body is required.

- Select all atoms and then press "a Rigid Body" to create it.
- Select the new body and rename it.
- Define two torsional degrees of freedom: (It helps to press the "Plot" button to identify the atoms.) Use Edit Rigid Body/Define torsion menu item.
 - Origin C1; Pivot C5 (riding O1 & O2)
 - Origin C2; Pivot C6 (riding O3 & O4)

Save the rigid body, if will be needed in a different project.

PREPARE TO INSERT RIGID BODIES

In this case we have a rough idea where the rigid bodies are located, so we will place them to match approximate of atoms in the structure.

Notes

- The rigid bodies have H atoms, but the atoms list does not; any rigid body atoms not in the atoms list can be added to the atoms list when the body is inserted
- There are some distortions in groups that will be corrected when atom positions are generated by from the rigid bodies.
- Note the atom list need not be ordered to match the rigid body, but that can make things more convenient.

157

Argonne 合

ORIENTING STRUCTURES IN WINDOW

Mouse movements change view of structure

When the structure is viewed, use of the mouse buttons changes the view of the crystal structure:

- Holding down left button (left drag): rotates axes around screen x & y
- Holding down right button (right drag): Moves the viewpoint, which is kept at the center of the screen (effectively translating the structure)
- Holding down center button (center drag): rotates axes around screen z
- Rotating the scroll wheel: changes "camera position" (zoom in/out)

When the Rigid Body and structure are shown together, holding the Alt button while dragging the mouse causes the same movements, but only to the rigid body

• Pressing the "c" key sets the viewpoint to $(\frac{1}{2}, \frac{1}{2}, \frac{1}{2})$ [value can also be edited in Draw Options tab]

159

RB phase phase type # label

19 C12

18 C11

17 C10

type

С

С

С

C8

C9

C10

Argonne 스

Help

Auto find residues Copy rigid body parms

Global thermal motion Global residue refine Remove all rigid bodies Crystal Highlight: C10

Actions with assigned

atom(s)...

HIGHLIGHTING ATOMS

The "Locate and Insert Rigid Body" command creates table with rigid body atoms and matching atoms in crystal structure (with the distance between them).

Atoms can be paired.

To help determine which atoms should be paired, specific atoms can be highlighted.

- Selecting a row causes the rigid body atom and the matching crystal structure atom to be highlighted
- To highlight a different atom in the crystal, use the "Crystal Highlight" pulldown, or press Tab to select crystal atoms
- Pressing Alt+Tab cycles through the rigid body atoms. 160

delta, A Assign as atom

8.127

8.985

8.057 C9

WHAT IS SHOWN IN STRUCTURE PLOT

- The View Point (six-line star) shows the cell axes. Move with right mouse; reset to (½, ½, ½) with "c"
- The triplet with arrows shows the Cartesian axes with the origin placed the rigid body position
- Axes & cell edges are colored red, green & blue for x, y & z, respectively
- The white line in the triplet is the vector direction for the rigid body orientation. The azimuth angle rotates the rigid body around this axis.

INSERT THE BIPYRIDINE INTO THE STRUCTURE (2)

Position RB close to location in structure

- Use mouse to reorient view of structure
- Holding Alt down & use of Left/Middle/Right repositions the rigid body.
- As noted before: bipyradine origin must be at $\overline{1}$
- Edit origin to enter (0,¹/₂,1) (N.B. RB is now close as shown below)
 - Press lock to prevent changing this by accident with Alt+right mouse
- Use Alt+Left & Alt+Middle to get bodies close; rotating plot for multiple views

Note that as the atoms are moved, the table is updated with the closest matches between atoms and the distances between them.

INSERT THE BIPYRIDINE INTO THE STRUCTURE (3) RB has been located close to site in

structure

- Adjust until all non-H atoms match within ~0.2Å
- Press "Add" to use use this origin and orientation.

The window changes to show the rigid body parameters. Rigid body bonds are shown in Orange (by default)

				, ,,			
General	Data	Atoms	Draw Options	Draw Atom	s RB Models	Map peaks	м
Residue rigio	l bodies:						
halfBiPy:0							
Name: halfBi	Pv:0	Delete					
Origin x,y,z (frac)	0.0	0.5	1.0		Refine?	
Rotation and	le (dea)					_	
& Orient. ved	tor (frac) 150.1	4 0.0044	-0.0046	0.1344	<u> </u>	
Rigid body th	nermal m	otion mo	del: None	Units: T A^	2, L deg^2, S de	g-A	

ocating rig	gid bod	y : halfE	BiPy D	isplay cry	stal structure as	Ball & Sticks Sticks
rigin: x (0.0		y 0.5		z 1.0	Cock
rientation	azimut	h: 150	0.14		0	
rientation	vector	x: 0.	0044	y:	-0.0046	z: 0.1344 (frac coord
igid body	symme	try axis	: ON	lone 🔘	х Оу	◯z ◯x+y ◯x+y+
side ch	ain torsi	ons				
٨d	4	Cone				
Ad	t I	Canc	el			
Ad		Canc	el	dy and cru	retal llee accier	ments to align hodies
Ad	d veen ato	Canc oms in r	el igid boo	dy and cry	rstal. Use assigr	ments to align bodies.
Add	d veen ato RB type	Canc oms in r phase #	igid boo phase label	dy and cry delta, A	rstal. Use assigr Assign as atom	ments to align bodies. Crystal Highlight:
Add latch betw C8	d veen ato RB type C	Canc oms in r phase # 1	igid boo phase label C8	dy and cry delta, A 0.198	rstal. Use assigr Assign as atom	ments to align bodies. Crystal Highlight:
Add latch betv C8 C9	d veen ato RB type C C	Canc oms in r phase # 1 2	igid boo phase label C8 C9	dy and cry delta, A 0.198 0.058	rstal. Use assigr Assign as atom	Actions with assigned atom()
Add fatch betw C8 C9 C10	d veen ato RB type C C C	Canc oms in r phase # 1 2 3	el igid boo phase label C8 C9 C10	dy and cry delta, A 0.198 0.058 0.152	rstal. Use assigr Assign as atom	Actions with assigned atom(s)
C8 C9 C10 C11	RB type C C C C C	Cancoms in r phase # 1 2 3 4	el igid boo phase label C8 C9 C10 C11	dy and cry delta, A 0.198 0.058 0.152 0.169	rstal. Use assigr Assign as atom	Arrents to align bodies. Crystal Highlight: Actions with assigned atom(s) Process Assignments
C8 C9 C10 C11 C12	RB type C C C C C C C C	Cancoms in r phase # 1 2 3 4 5	igid boo phase label C8 C9 C10 C11 C12	dy and cry delta, A 0.198 0.058 0.152 0.169 0.109	rstal. Use assigr Assign as atom	Actions with assigned atom(s) Process Assignments
C8 C9 C10 C11 C12 N3	RB type C C C C C C C N	Canc oms in r phase # 1 2 3 4 5 6	igid boo phase label C8 C9 C10 C11 C12 N15	dy and cry delta, A 0.198 0.058 0.152 0.169 0.109 0.098	rstal. Use assigr Assign as atom	Actions with assigned atom(s) Process Assignments Set Origin
C8 C9 C10 C11 C12 N3 HC8	d veen ato RB type C C C C C C N H	Cancoms in r phase # 1 2 3 4 5 6 6 -1	igid boo phase label C8 C9 C10 C11 C12 N15 ?	dy and cry delta, A 0.198 0.058 0.152 0.169 0.109 0.098 -1.000	rstal. Use assign Assign as atom Create new	Arrents to align bodies. Crystal Highlight: © Actions with assigned atom(s) Process Assignments Set Origin Set Orientation
Add latch betw C8 C9 C10 C11 C12 N3 HC8 HC9	RB type C C C C C C N H H	Canc phase # 1 2 3 4 5 6 -1 -1	el igid boo phase label C8 C9 C10 C11 C12 N15 ? ?	dy and cry delta, A 0.198 0.058 0.152 0.169 0.109 0.098 -1.000 -1.000	rstal. Use assign Assign as atom Create new Create new	Actions with assigned atom(s) Process Assignments Set Origin Set Origin Set both

Atoms Draw Options Draw Atoms RB Models Map pe

Add Cancel y 0.5 y 1.0 Lock Prioritation vectors 0.0058 y: 0.0 z: 0.1347 (frac c Vigid body symmetry axis: • None x y z x+y x Add Cancel - - - - - - Match between atoms in rigid body and crystal. Use assignments to align bodies. -	Locating rigi	d body	: halfBiP	y Dis	splay cry	stal structure as	s: Ball & Sticks Sticks
Big body symmetry axis: None x y 0.0 z: 0.1347 (frac e Rigd body symmetry axis: None x y z x+y x No side chain torsions Add Cancel Cancel	Drigin: x 0.0	D	У	0.5		z 1.0	Cock
B photo dets. / A saign as atm Crystal High/off: c8 C 2.C0 1.374 Actions with assigned atom c9 C 3.C10 1.816 atom c10 C 4.C11 1.837 Process Assignments c11 C 5.C12 1.377 Process Assignments c12 C 1.648 Set Origin Set Origin H6B H -17 -1.000 Create new Set Origin	Drientation a Drientation v Rigid body s No side chair Add	vector ymmet n torsid	x: 180.0 x: 0.00 ry axis: ons Cancel) 058 • No	y:	0.0 x y	2: 0.1347 (frac coords) 2: 0.x+y x+y+z 2: x+y+z
cs o 2 CS 1.374 Actions with assigned atom(s) cs c 3 C10 1.816 atom(s) c10 C 4 C11 1.877 Process Assignments c11 C 5 C12 1.377 Process Assignments c12 C 1.08 0.838 Set Origin max N N N 6 N15 1.046 Set Origin Hea H -17 -1.000 Create new Set Origin Set origin	nateri betire	RB	phase p	phase	delta, A	Assign as atom	Crystal Highlight:
HC11 H -1 ? -1.000 Create new	C8 C9 C10 C11 C12 N3 HC8 HC9 HC11	C C C C C C C C N H H H	2 C 3 C 4 C 5 C 1 C 6 N -1 ? -1 ? -1 ?	29 210 211 212 28 415	1.374 1.816 1.837 1.377 0.838 1.848 -1.000 -1.000 -1.000	Create new Create new Create new	Actions with assigned atom(s) Process Assignments Set Origin Set Orientation Set both

CHANGE IN THE ATOMS TABLE

Atoms in the rigid body are displayed in gray

- After the rigid body is added, atoms in rigid bodies are highlighted in gray in the atoms display.
 - Note that atoms added to the list when the RB was included are name "Rb..." and are placed at the end of the list.

Project: /private/tmp/AddR	 ✓ General 	Data	Atom	s Dra	w Options	Draw Atoms	RB Mode	ls Map	peaks
Notebook		Name	Type	refine	v	v		frac	eita eur
Controls		Name	Type	Terme	^	y	-	nac	Site Syl
Covariance	1	C2	С	U	0.17598	-0.03441	1.01030	1.0000	1
Constraints	2	C3	С	U	0.19689	-0.15244	1.04168	1.0000	1
Restraints	3	C4	С	U	0.24874	-0.03384	1.19688	1.0000	1
Rigid bodies	4	C5	С	U	0.22855	0.08322	1.15924	1.0000	1
PWDR Co_PCP_Act_d90	5	C6	С	U	0.13827	-0.00785	0.87173	1.0000	1
Comments	6	C7	С	U	0.16128	-0.28355	0.96945	1.0000	1
Limits	7	C8	С	U	0.08844	0.46181	1.06507	1.0000	1
Background	8	C9	С	U	0.05387	0.53126	1.04496	1.0000	1
Instrument Parameter	9	C10	С	U	0.01896	0.46489	1.01132	1.0000	1
Sample Parameters	10	C11	С	U	0.02099	0.32784	0.99952	1.0000	1
Peak List	11	C12	С	U	0.05692	0.26528	1.02136	1.0000	1
Index Peak List	12	N13	Ν	U	0.19090	0.08057	1.09115	1.0000	1
Unit Cells List	13	N14	Ν	U	0.23367	-0.15118	1.14153	1.0000	1
Reflection Lists	14	N15	Ν	U	0.09039	0.32924	1.05364	1.0000	1
Phases	15	016	0	U	0.11984	0.09439	0.89629	1.0000	1
	16	017	0	U	0.12467	-0.09672	0.76220	1.0000	1
	17	018	0	U	0.15534	-0.31790	0.80673	1.0000	1
	18	019	0	U	0.16900	-0.37807	1.07768	1.0000	1
	19	020	0	U	0.17412	0.35706	0.91612	1.0000	1
	20	RbH20	н		0.11160	0.50998	1.08779	1.0000	1
	21	RbH21	н		0.05422	0.62379	1.05426	1.0000	1
	22	RbH22	н		-0.00171	0.27735	0.97693	1.0000	1
	23	RbH23	н		0.05736	0.17270	1.01266	1.0000	1

INSERT THE PYRAZINE INTO THE STRUCTURE (1)

Identify the body

- Go to RB Models phase tab; use "Edit Body"/"Locate and Insert Rigid Body"; select the pyrazine fragment
- Note that for this body, both the origin and orientation must be determined.

INSERT THE PYRAZINE INTO THE STRUCTURE (2)

Define pairs of atoms

 This time we will identify rigid atoms that should be paired with specific atoms in the structure. We will use the 1st two C and 1st two N atoms. Then press the "Set both" button for a best-fit.

INSERT THE PYRAZINE INTO THE STRUCTURE (3)

Adjust torsions

- The torsions set at 0 degrees reproduces the initial structure well, but moving the sliders shows different options.
- Press the "Add" button to insert this body.

Argonne 스

REFINEMENT WITH RIGID BODIES

Orientation and Origin can be refined

Origin: The rigid body origin can be refined or not. (In special cases it may be necessary to use a "Hold" constraint on one or two origin parameters – see following slides.)

Orientation: orientation is defined by a quaternion, reorganized as a unit vector (V) and azimuthal rotation around that vector (A). Orientation can be refined in one of three modes: "A", "AV" or "V".

- $\,\circ\,$ In "AV" mode, both the vector and azimuth are refined
- In "A" mode, only azimuthal rotation is refined. This is used when symmetry requires a particular orientation for the vector.
- In "V" mode, only the vector is refined. This is used for linear molecules where the linear axis is aligned with the RB vector.
- *Example*: For bipyridine discussed earlier, the origin cannot be refined, but for pyrazine it should be. For both, the orientation can be refined as "AV"

Argonne 🛆

RIGID BODIES WITH INTERNAL CRYSTALLOGRAPHIC SYMMETRY

It is fairly common that a rigid body will have internal symmetry, such as the 6/m symmetry of the C atoms in a phenyl group; it is somewhat less common for the crystal symmetry to enforce some or all of the symmetry of the rigid body. When this does occur, the rigid body must be placed at a special location (point, axis or plane) with higher crystallographic symmetry. Placement and refinement will require special attention.

169

When a rigid body is placed on a crystallographic symmetry location, several changes may be needed:

• The RB must be defined to align the Cartesian axes/origin to the symmetry:

The Cartesian RB symmetry axis must be defined along x, y or z (or x+y or x+y+z). The Cartesian origin must be defined to match symmetry points or planes in the body

• The body must be inserted into the structure to retain symmetry:

The RB must be inserted into the crystal structure to place the quaternion rotation vector along the selected Cartesian axis. The origin will be a high-symmetry Wyckoff site

• Which rigid body parameters may be refined:

It will not be possible to refine all six degrees of freedom; symmetry will determine what parameters can be refined.

The origin in crystal space must be constrained to stay on the axis or plane; if on a symmetry point, it cannot be refined.

RIGID BODIES ON SPECIAL POSITIONS

Setting constraints on the body position

Usually the x,y & z components for the rigid body positions are all refined, but symmetry may require a constraint such as x=0 or x=y, while for individual atoms, these constraints are created automatically, for rigid bodies constraints must be generated manually.

Do this by creating holds or equivalences on the appropriate parameters in the Constraints/Phase tree section

Note naming of rigid body origin parameters:

Residue bodies:

RBRPx:n:m: for x (...Py for y, ...Pz for z), where n is the rigid body number and m is the insertion number.

Vector bodies: RBVPx:n:m etc.

The variable name is shown for each body in the RB Models tab

d						
	Name: halfBiPy:0	Delete (vari	ables 0::RBR	xxx:0:1)		
	Origin x,y,z (frac)		0.0	0.5	0.0	Refine?
etc.	Rotation angle (deg & Orient. vector (fr Origin site symmet Rigid body membe Rigid Body atom sit	g) ac) 153.44 ry: -1, multiplicit rs: C8, C9, C10, te fraction: 1.0	0.0036 cy: 4 C11, C12, N	-0.0052	0.134 C9, HC11, H	HC12
or	Rigid body thermal	motion model:	Uiso 🗸	Units: T A'	2, L deg^2,	S deg-A
tab	Uiso: 0.0751	Refine	?			,

SPECIAL CASES: SYMMETRY INTERNAL TO RIGID BODIES (1)

Classified by symmetry class

Here are the different cases for rigid body symmetry:

- Center of symmetry: The Cartesian origin will need to be the 1 position. This will always be either on an atom or at the midpoint between two (or, unlikely, more) atoms. Usually only one from each symmetry-related pair of atoms will be included in the body (or occupancies must be set to 0.5 due to atom duplication). There are no requirements on orientation of axes.
 - Crystal coordinates: The rigid body origin will be defined as the 1 site and will not be refined. The body orientation can be refined in "AV" mode (no constraints).
 - Occupancies: Consider if atoms are duplicated by the $\overline{1}$ and if so lower frac relative to any atom at the origin
- **Mirror plane**: The rigid body must be defined so that the normal to the mirror plane must be along a fixed Cartesian axis* for the body and the Cartesian origin must be defined so that it lies in the mirror plane. (i.e., if z will be the normal direction then the plane must be at z=0).
 - Crystal coordinates: One coordinate in the rigid body origin will need to be fixed on the mirror plane (typically place a hold on variable p::RBRP*ξ*:#:# *ξ*=x, y or z; diagonal mirror planes may require equivalences between x, y and/or z) so that the origin may be refined. The RB orientation vector will need to be fixed along the mirror plane normal. Only the RB azimuth angle can be refined (mode "A").
 - Occupancies: Consider if atoms are duplicated, if so lower frac relative to atoms on the plane

* Possible Cartesian axes that can be used for the symmetry direction are x, y, z, x+y or x+y+z

SPECIAL CASES: SYMMETRY INTERNAL TO RIGID BODIES (2)

Additional symmetry classes

- Rotation axis: The Cartesian origin must be defined on the axis, which will be at a midpoint between a group of atoms or on an atom. Align the axis along a fixed Cartesian axis*.
 - Crystal coordinates: coordinates for the rigid body origin will need to be constrained to stay on the axis by placing holds and/or constraints on two origin parameters (*p*::RBRPξ:#:# ξ=x, *y or z*) to leave one free parameter. The RB orientation vector will need to be fixed along the axis. For orientation only the RB azimuth angle can be refined (mode "A").
 - Occupancies: Consider if atoms are duplicated by the axis and if so lower frac relative to any atoms on the axis
- Improper rotation axes define both an axis and a perpendicular plane. The Cartesian origin
 must be fixed on the point where the axis meets the plane and the symmetry axis for the RB
 must be aligned with the quaternion axis. In crystal coordinates the origin is fixed and for
 orientation only the RB azimuth angle can be refined (mode "A").
- Glide planes and screw axes could require constraints similar to the previous examples, but this would occur only in the unlikely event that a molecular fragment has such internal symmetry.

* Possible Cartesian axes that can be used for the symmetry direction are x, y, z, x+y or x+y+z

173

SPECIAL CASES: SYMMETRY INTERNAL TO RIGID BODIES (3)

Constraints on Linear Rigid Bodies

A Linear rigid body has two orientational degrees of freedom rather than three, since a rotation of the object along the linear axis leaves it unchanged. The RB should be defined so that the linear axis falls on one of the allowed Cartesian axes*. How it will be treated depends on the symmetry for the location where it will be placed.

- General position: when a linear rigid body is placed in a location with no symmetry, there are no
 restrictions on the origin location or the orientation. The origin can be refined freely and the
 orientation can be refined in "V" mode (two degrees of freedom).
- **Symmetry axis**: when a linear body is placed on a symmetry axis, orientation must be engineered to lie on that axis. Such a body has only one degree of freedom, the position along that axis (use appropriate constraints on the origin). The orientation cannot be refined.
- Symmetry plane: the most common case is a linear RB lying in a mirror plane. When inserting, the rigid body symmetry axis must be defined along the normal to that plane. The origin for the RB will have two degrees of freedom (use appropriate constraints) and there will be one orientational degree of freedom, to rotate the body around the azimuthal angle ("A" mode).

* Possible Cartesian axes that can be used for the symmetry direction are x, y, z, x+y or x+y+z

Argonne 스

INSERTING THE RIGID BODY: SYMMETRY SETTINGS

For bodies on mirror planes or rotation axes

 When inserting a body with azimuthal symmetry constraints, the axis previously defined as the symmetry axis must be designated

Origin: x 0.0	у О.О		z 0.0	Lock	
Orientation azimuth:	187.9		0		
Orientation vector x	1.0	y:	0.0	z: 0.0	(frac coords)

- The orientation vector will need to be specified as well as the origin.
- The effect of rigid body angular rotation can be viewed with the azimuth slider

A	-	7	
1			٠
			~

ADP FITTING FOR RIGID BODIES

ADP = Atomic Displacement Parameters (~ thermal parameters)

Motion of atoms in rigid bodies can be refined with individual displacement parameters (DP: Uiso or Uaniso) but this is usually not a good thing to do. Simpler models treat all atoms in the body with grouped terms.

The simplest model has a single Uiso value for all atoms in the rigid body

It is also possible to describe group motion using "TLS terms".

- The T terms describe translational motion, which will be the same for all atoms in the group, but can differ by direction like anisotropic DPs.
- The L terms describe libration, which can be thought of as frustrated rotations around the origin of the body. The further the atom is located from the body origin, the larger L will make the DP.
- The S terms describe "screw" motion, which combines T & L motion, and is not needed if the group motion is unhindered and origin is at the center of mass.

Start fitting using a single Uiso value. The next most complex model is to define constraints to have a single T ($T_{11}=T_{22}=T_{33}$) & single L term ($L_{11}=L_{22}=L_{33}$). I sometimes use a few T & L terms, but with powder data, never more than a few.

Argonne 스

OCCUPANCIES FOR RIGID BODIES

Rigid bodies have a single term for the occupancy for all atoms in the body. This can be refined where appropriate.

- When a rigid body has lower internal symmetry than the site where it is placed, the body will be disordered; a fractional occupancy value of 0.5 (or lower) will be needed.
- When a rigid body has internal symmetry and is placed at a site consistent with that symmetry, there will be duplication of atoms. GSAS-II will determine when atoms are duplicated and will set duplicates to have Frac=0 so that the "extra" atom(s) are ignored.

Example:

- In a previous example, a rigid body was defined for bipyridine using only one half of the atoms, this was inserted at a 1 position where no atoms are duplicated. Note this body definition could not be used at a lower symmetry site because atoms would be missing.
- The rigid body could have been defined with both rings. If then inserted at the 1 site, one half
 of the atoms would have an initial occupancy of 1 (which could be refined). The other half of
 the atoms would have their occupancy fixed at 0.

177

Argonne 🛆

OTHER RIGID BODY TRICKS

- It can be useful to combine restraints with rigid body constraints. For the example structure, restraints can be placed on the Co-O and Co-N bond distances, which places further restrictions to prevent the refinement from overfitting.
- Rigid Body torsions will not move H atoms as riders. If H atoms are needed, use Edit Atoms/"on selected atoms..."/"Calc H atoms" to generate H atoms on riders.
- On occasion I have needed to have two rigid bodies that have a fixed connection with each other, but still have degrees of freedom. To do that in GSAS/EXPGUI, I define the bodies so that they share an origin at the point which joins them. I then constrain the origin of the two groups to refine together. This is probably not needed in GSAS-II, since both groups of atoms can be placed in a single body with a torsion between them.

Argonne 🛆

OTHER NICE TOOLS FOR GUEST/SOLVENT MOLECULE STRUCTURES

Understanding the spatial environment in crystal space

Void space visualizer: "Edit Figure"/"Create Void Map" (in Draw Atoms)

 Resulting map shows regions of space without atoms

a	Atoms	Dra	w Options	Dra	aw Atom	s RB Models	Ma
ne	Туре	x	у		z	Sym Op	
1	00	Voi	d computat	tion p	arameter	S	sti
S	et parame	eters f	or void con	nputa	tion for p	hase Co-PCP	sti
Ν	lax a valu	e: 🗕	0)—	1.	0	sti
						-	sti
M	lax b valu	e:	0		1.	.0	sti
N	lax c valu	e:			1	0	sti
						•	sti
G	rid spacir	ng (A)	0.25				sti
P	robe radi	us (A)	0.5				sti
				-			sti
			Cancel		ОК		sti
ι.							sti

Argonne 🐴

OTHER NICE TOOLS FOR GUEST/SOLVENT MOLECULE STRUCTURES

Using the View Point

- By default, the view point is set to (1/2,1/2,1/2)
- Move the view point using right mouse button
 Movement is in screen x-y
 - Rotate drawing (left mouse) for 3rd dimension
 - Position is shown in bottom frame
 - Reset to $(\frac{1}{2}, \frac{1}{2}, \frac{1}{2})$ by pressing "c" key
 - Type in coordinates on Draw Options
- Optionally, highlight distances around view point; shows symmetry-related atoms

	GSAS-II project: 50bar_new.gpx	p -{ p
x	✓ General Data Atoms Draw Options Draw Atoms RB Mo	
	Bond search factor: 0.8	
	Background color: View Dir.: 0.045 -0.145 0.988	
	Show view point? View Point: 0.569 0.675 0.507	
	Show Map points within: 0.0 Å	
Ьł	Show atoms within: 3.0 Å	
ar	Label distance to atoms within: 3.0 Å	
	 ✓ Show unit cell? ✓ Show hydrogens? ✓ Show Rigid Bodies? Fade sym equivs? ✓ Show void map? 	

A FEW OTHER NEW VISUALIZATION/MAP FEATURES

- Map peaks (Map peaks menu)
 - Equivalent peaks: finds peaks related by symmetry to a selected peak
 - Unique Peaks: brings one symmetry-unique peak to top of list

Draw Atoms (Edit Figure menu)

- Complete Molecule: Adds atoms bonded to selected atoms already in draw list

	Malagular completion perometers	
0) Co1	Molecular completion parameters	
✓ 1) C2	Pause after:	
2) C3	10 v repetitions	
✓ 3) C4	repetitions	
✓ 4) C5	1000 v added stores	
5) C6	added atoms	
6) C7	Atom types to add:	
7) N13		
Apply stride: 1		
Set All Toggle All	Ok Cancel	

CONCLUSIONS

Rigid bodies are fun, perhaps not easy, but very useful

GSAS-II has two very powerful rigid body implementations

New GSAS-II tools make them much easier to create and use

www.anl.gov

INCOMMENSURATE STRUCTURES IN GSAS-II

Book: "Incommensurate Crystallography" S. van Smaalen

Includes m=-2,-1,1,2 superlattice reflections; Rietveld refinement includes 1st & 2nd order harmonics on position depending on atom

INCOMMENSURATE STRUCTURES Symmetry symbols – interpreted by GSAS-II (not lookup)					
 Space group + super symmetry syr e.g. Na₂CO₃ – C2/m(α0γ)os 	mbol				
Space group Trans Modulation vector	lation component				
	ip & 4 th dimensional component				
Superspace Group: C 2/m(a0g)0s The lattice is centrosymmetric C-centered monoclinic The Laue symmetry is 2/m The superlattice point group is 2/m, 1-1 The number of superspace group generators is 2 Multiplicity of a general site is 8 The unique monoclinic axis is b The inversion center is located at 0,0,0	Possible modulation vectors: e.g. αβγ, α0γ, 0β0, α½γ, ½β0 Translations: 0,s,t,q,h 1-4 of these				
The equivalent positions are: (0,0,0,0; 1/2,1/2,0,0)+ (1) x, y, z, t (2) -x, y, -z, 1/2-t OK	Depend on space group GSAS-II shows legal choices				
	189				

INCOMMENSURATE STRUCTURES

Cases not allowed in GSAS-II

- 3+2 & 3+3 not allowed in GSAS-II
 - Too complex to deal with easily
 - 3-D 230 SG
 - For 3+1: 4,783 possible SG
 - For 3+2: 222,018 possible SG
 - For 3+3: 28,927,922 possible SG
 - But only a handful found not worth the hassle
- Ad hoc centering not allowed
 - 'X' space groups all have equivalent legal ones with transformation
- Other odd cases found in cif files not allowed
 - e.g. R-centered monoclinic

191

Argonne 🛆

SMALL ANGLE SCATTERING – SEQUENTIAL DATA ANALYSIS

Ludox colloidal silica from Aldrich – dilution range

WHAT TO REFINE AND WHEN?

If all parameters in a refinement were close to the true minima and correlation is minimal, then it would fine to start by optimizing all everything. Who is that lucky?

In practice parameters must be relaxed slowly, with the order dictated by which parameters are farthest from the correct values

BASIC STRATEGY

Need reasonable values for unit cell, scale factor, background and profile before refining structural parameters, locating missing atoms... – Le Bail fit allows fit of cell, background and profile

- Always use a standard to determine the true instrumental profile (or get beamline scientist to do it!)
 - With accurate profile terms you only need to worry about sample broadening
 - Postpone asymmetric broadening treatment until late in the refinement
- When you can't determine the instrumental profile, follow CW or TOF tutorial to get approximate values before starting
- Having reasonable profile terms can save you from heartache
 With this, you only need to fit sample broadening
 - 199

Argonne 🛆

REFINEMENT RECIPE (PART 2)

- Is peak shape in the right ball park?
 - If possible, postpone profile refinement to later stages
 - If profile is way off due to sample broadening, (you do have reasonable instrumental terms!) refine only sample terms (see if either microstrain or size alone can take care of most broadening)

Fit atom coordinates

- release "big" atoms first
 - big = high multiplicity*b or *f(Q)

201

Argonne 스

REFINEMENT RECIPE (PART 3)

- Refine displacement parameters (U_{iso})
 - for complex structures, group Uiso terms

Think: Is the structure reasonable in terms of distances & angles?

- missing atoms? Examine Fourier map
- Refine occupancies? (x-rays: beware!)
- Add more complex sample broadening terms (microstrain + size together, see if uniaxial treatment on more significant term produces a large Rwp improvement)
- Usually not necessary to refine Instrumental profile terms

REFINEMENT RECIPE (PART 5): FINISH UP

- Refine background, if fixed from LeBail. Add more background terms, if needed.
- Ungroup U_{iso}'s if data allow.
- Attempt anisotropic refinement of "big" atoms, when data quality permits.

REFINEMENT RECIPE (PART 6)

Common problem: At high Q, peaks run together so that background cannot be determined.

 Choice of Background determines average U_{iso}. Refining Background and U_{iso} together results in good fits but unreasonable average U_{iso}(<0.001 or >0.025 Å²) values.

Solution: Need to fix the average U_{iso}.

- set all U_{iso} = to something reasonable (say 0.01 to 0.03)
- refine background
- fix background, & refine U_{iso}'s
- Document in your paper that background and displacement parameters had too much correlation for independent refinement & say what was done.

205

Argonne 🛆

WRAP UP

Rietveld fits are almost never perfect since materials and instruments are not perfect. There is almost always something more to try.

Complex problems may stretch the limits of what can be learned from the data. Getting better data is always best, but more frequently one must reduce the complexity of the model (restraints and constraints)

GSAS-II offers many options to address this.

SCALE FACTOR

- There is a scale factor for each histogram
- There is a phase fraction for every phase in every histogram.
 - Phase fraction multiplies scale factor
 - Phase fraction \times Z \times Molecular Weight (asym unit) \propto weight fraction of phase (GSAS-II computes)

Redundant parameters: Don't refine scale and all phase fractions together, unless a constraint is placed on the total phase fractions

207

Argonne 合

USE RESTRAINTS EARLY WHEN FITTING RECALCITRANT MODELS

Builds a priori knowledge into refinement

- Weighted "cost" function added to total χ2
 bond distances & angles
 - unit cell contents
 - misc. geometrical (mostly for macromolecular)
- Can be used to guide a balky refinement
 relax weight at end to 0 (if possible)
- Not always possible to remove Restraint weight
 - be sure to separate derived vs. "driven" results in your paper!