CERN-MEDICIS programme and upgrade plans at **ISOLDE**

Radioisotope Production at SNS (RIPS) Workshop

September 27-28

Oak Ridge National Laboratory

T. Stora

With input/data from A.P. Bernardes, C. Duchemin, M. Fraser, A. Gottberg, S Marzari, E. Noah, F. Pozzi, J.P. Ramos, S. Stegemann,, S. Rothe, J. Vollaire

- 1) Define some unique, desirable radioisotopes that can be produced using high-energy protons incident upon various spallation targets.
- 2) Determine how we can effectively isolate/separate the desired radionuclide(s).
 - a) On-line mass separation?
 - b) Bulk post-irradiation chemical and mass separation?
- 3) Identify the most challenging technological implementations and roadblocks.
 - a) What are the target technology limitations?
 - b) What is the target technical readiness?
 - c) What target materials would be interesting in terms of production with either protons or neutrons and postirradiation handling?
- 4) Consider the regulatory aspects/challenges of adding isotope production to a facility (SNS) regulated by the Accelerator order.

Mass separation as applied in MEDICIS (batch mode) in a snapshot

RIPS workshop - 27-28 Sept 23 - ORNL

27 EU P Prismap

Principle of isotope production

From excitation function to production rate to source activity to KPI (see later)

History of isotope beams by mass separation (Online, ISOL)

Target materials in ISOL facilities

J. P. Ramos, <u>https://doi.org/10.1016/j.nimb.2019.05.045</u>

Courtesy S. Stegemann

RIPS workshop - 27-28 Sept 23 – ORNL

Target materials in ISOL facilities

120 Materials (possibly more) were tested and/or used as ISOL targets!

							Oxides				
Carbon	AIC ₂	B ₄ C	C(gr)	<u>C (MWCNT)</u>	CaC ₂	CmC _x	$\underline{AI_2O_3}$	B ₂ O ₃	BaO	<u>BeO</u>	
Based	GdC _x	<u>LaC</u> ₂	ScC ₂	<u>SiC</u>	TaC _x	ThC ₂	<u>CaO</u>	CeO ₂	Cr ₂ O ₃	<u>HfO₂</u>	
	<u>TiC</u>	<u>UC</u> ₂	VC	ZrC	Cm	Hf	La ₂ O ₃	MgO	<u>NiO</u>	SrO	
	lr	lr/C	Ta/lr/W	Мо	Nb	Os	Ta ₂ O ₃	<u>ThO₂</u>	<u>TiO₂</u>	UO ₂	
	Pu	Pt/C	Re	Re/C	Ru	Ru/C	Si layers	<u>Y₂O₃</u>	ZrO ₂	ThO2/Ta	
Solid	Sn/C	<u>Ta</u>	Ta/W	Ti	Th	Th/Ta	AIN	BaB ₆	BaZrO ₃	TiO ₂ .(H ₂ O) _x	First
Metals	Th/Nb	U	U/C	V	W	Zr	BN	Ca-zeolite	CaB ₆	ZrO ₂ .(H ₂ O) _x	Materials
	Au	Ag	Bi	Cd	Ce	Ce ₃ S ₄	Ce(OH) ₄	CaF ₂	CeB ₆	CeO ₂ .(H ₂ O) _x	
	Er:Cu	Ge	Gd:Cu	Hg	La	La:(Th/Si/Sc)	CeS	LuF_3	Na-zeolite	ThO ₂ .(H ₂ O) _x	
	La:(Y,Gd,Lu)	<u>NaF:LiF</u>	NaF:ZrF ₄	Nd	Ni	Pr	Ta₅Si₃	Hf_5Ge_3	Hf_5Si_3	Sr stearate	
	Pt:B	Sc:La	Sn	Tb	TeO ₂ :KCI:LiCI	ThF ₄ :LiF	Hf_5Sn_3	Ta₅Si₃	TI-zeolite	Ba stearate	
	Pb	<u>Pb:Bi</u>	Y:La	U	U:Cr	Zn	Th(OH) ₄	Zr_5Ge_3	Zr_5Si_3	TeCl ₄	
	Molten						Others				

٠

In squares – currently used at ISOLDE

J.P. Ramos, PhD Thesis, EPFL/CERN (2017)

Underlined and Bold – had been subject of material development

27 EU

Which target, which beam characteristics

J. P. Ramos, https://doi.org/10.1016/j.nimb.2019.05.045

Al₂O₃-Nb 25kW ISOL target

T. Stora et al, EURISOL-DS (100kW 1 GeV oxide targets) https://doi.org/10.1063/1.3120150

Specificity of a PSB pulsed beam at CERN : high energy, pulsed beam

https://isoyields2.web.cern.ch/InTargetProductionChart.aspx

 \rightarrow ISOLDE upgrade(s) programme : higher intensity, 1.4-2GeV

- 2.8 kW in average
- 1.2 GW (pulse length 2.3 μs)
 - ~10% deposited \geq

RIPS workshop - 27-28 Sept 23 - ORNL

Raciochemical process(es) of the targets prior or after in the MEDICIS or external laboratories

Fom one-atom-at-a-time experiments to large production needs

Ionisation efficiencies

¹⁵³ Sm	12.7
¹⁶⁷ Tm	55 %
¹⁵⁵ Tb	1-6
²²⁵ Ac	15.1%

Johnson, J.D., et al. Sc. Rep.13, 1347 (2023)

²²³⁻²²⁵Ra 30-45%*,

*C. Duchemin et al. strategies to double this figure already initiated

27

RIPS

RIPS workshop - 27-28 Sept 23 - ORNL

13

Introduction of Key Performance Indicators at MEDICIS

- KPI 1 : Efficiency and Activity (0.1-100% / kBq-GBq) (→ luminosity)
- KPI 2 : Dosimetry (uSv / contamination / events)
- KPI 3 : Importance (high/medium/low) (→ reliability)

• KPI 4 : Timing (T process, import/export vs T1/2 isotope) (\rightarrow downtime)

In these 4 KPIs are hidden some others, eg down-time / up-time of the facility, delivered poT and useful proton on MEDICIS target, mode of failure, planning, ...

IPAC

Upgrade of the proton beam line (BTY line)*

- PS Booster energy increase in 2020 (1.4 GeV to 2.0 GeV) as part of the LIU project (LHC injectors upgrade)
- Reconfiguration of the BTY line (beam line to ISOLDE) planned in 2025 in parallel to the Power Converters replacement to benefit from the 2.0 GeV beam (increased production yields for several radionuclides). 1.4 GeV kept as operational beam.
- Geometrical reconfiguration of the vertical dogleg between the PS Booster and ISOLDE and addition of two dipoles for the HRS target station switch. Detailed optics and integration studies ongoing.

New design for the vertical dogleg (same dipole changing the angle)

HRS switch (horizontal)

Current vertical dogleg

* Full consolidation programme under prioritization

Courtesy M. Fraser, J. Vollaire

STRACT:

This document covers the functional specifications of SIRIUS converters for the replacement of old power supplies in the framework of the accelerator consolidation program for the PSB-BTY transfer line.

Figure 7 — Building 197/1-401: possible integration of SIRIUS converters

Options for Front End and target area upgrades (Beam Dump Replacement)*

RIPS workshop - 27-28 Sept 23 – ORNL

Courtesy A.P. Bernardes, S. Marzari

27 EU

How to supply "novel" radionuclides with mass separation

 PRISMAP proposes to federate a consortium of high energy cyclotrons, research reactors, and isotope mass separation facilities in Europe.

Isotope mass separation

Research reactor

target transfer into Isotope mass separation unit

Our web interface : <u>https://www.prismap.eu/radionuclides/portfolio/</u>

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 101008571 (PRISMAP).

ERRY Madicis

RIPS workshop - 27-28 Sept 23 – ORNL

STARTING MATERIAL

Target preparation

MEDICIS

HEVESY LAB.

ARRONAX

NCBJ PSI

BR2 RHF

(NATURAL ENRICHED)

18

27 EU

P

Translation : Regulation of radiopharmaceuticals : Swiss example

Fabrication :

Used nuclear reaction - isotope halflife Radiation type and energy Pertubation induced by impurities

Nuclides produced by target irradiation

Target material, target envelop Composition, chemical form, purity, physical state, Chemical additives, capable to impact the end product Irradiation method, physical and chemical environment Target support Yield

Nuclides from fission

Full nuclide reaction chain, initial material (including impurities), daughter nuclides, half lifes, radiation type and energy Pertubation from impurities

End product control

- Nuclideidentity
- Purity of nuclides
- Radiochemical purity
- Chemical purity
- Specific activity

Nuclide treatment

- Description of isolation (separation from the target), nuclide concentration, yield.

Physical properties of nuclides

In detail : halflife, type and energy of radiation, evolution over time from the fabrication to the date of peremption of the drug, important aspects for disposal

Ident. QM : ZL000 00 003f WL / V01 / bg, stb, cas / zro / 01.04.2015

Thank you !

- Some more info connected to the RISP-ORNL project:
- eg EURISOL-DS 100kW direct targets (1GeV cw beam baseline) technical reports, and eventual follow-up projects
- MEDICIS-promed: Advances in radioactive ion beams for nuclear medicine. Frontiers in medicine, 9, 1013619. (Topical volume)
- Medicis.cern
- prismap.eu websites

Some yield estimates

				ISOI)LDE [†]		CERN-MEDICIS [†]		CERN-MEDICIS 2GeV 6µA			
Medical	Isotope	Parent	Target	In-target		RIB	In terret	Extra ato d	Possible	In-target		
pplication	half- life	isotope beam	- Ion source	Production rate (pps)	ActivityEOB (Bq)	Eext** (%)	ActivityEOB (Bq)	Activity EOB (Bq)	gain Eext (%)	Activi Extracted EOB	ty EOB/ d Activity (Bq)	Comments
3- therapy/ CT/dosimetry	²¹³ Bi 45.6m	²²⁵ Ac	UCX-Re	1.5E9*	7.2E8	²²¹ Fr 10	2.8E8	2.8E7	50	8.4E8	4.2E8	Only mass separation
β therapy	²¹² Bi 60.6m	²²⁴ Ac	UCX-Re	1.5E9*	1.4E9	²²⁰ Fr 10	1.7E9	1.7E8	50	5.1E9	2.5E9	Only mass separation
3 therapy	¹⁷⁷ Lu 6.7d	¹⁷⁷ Lu RILIS/VD	Ta-Re/ Re-VD5	3.3E9	7.4E8	¹⁷⁷ Lu 1	6.4E8	6.4E6	20	8.3E8	1.7E8	Chemical purification
ger therapy	¹⁶⁶ Yb 56.7h	¹⁶⁶ Yb	Ta-Re	1.4E10	5.4E10	¹⁶⁶ Үb 5	4.1E10	2.1E9	20	5.4E10	1.1E10	Chemical purification
3 therapy	¹⁶⁶ Ho 25.8h	¹⁶⁶ Ho	Ta-Re	1.4E7	1.2E7	¹⁶⁶ Ho 5	9.6E6	4.8E5	20	2.9E7	6.0E6	Chemical purification
uger therapy	¹⁶¹ Tb 6.9d	¹⁶¹ Tb	UCX-Re	2.1E7	2.7E7	¹⁶¹ Tb 5	1.9E7	9.5E5	20	2.7E7	5.4E6	Chemical purification
3- therapy	¹⁵⁶ Tb 5.35d	¹⁵⁶ Tb	Ta-Re	2.5E8	8.9E7	¹⁵⁶ Tb 1	5.5E7	5.5E5	20	6.3E7	1.3E7	Chemical purification
SPECT	¹⁵⁵ Tb 5.33d	¹⁵⁵ Dy/ Tb	Ta-Re	3.2E9/ 7.4E8	7.9E9	¹⁵⁵ Dy 1	5.3E9	5.3E7	20	3.4E9	6.8E8	RILIS Dy
3 therapy	¹⁵³ Sm 46.8h	¹⁵³ Sm	UCX-Re	1.5E8	2.2E9	¹⁵³ Sm 5	2.8E9	1.4E8	20	5.2E9	1.0E9	Chemical purification
PET/CT	¹⁵² Tb 17.5h	¹⁵² Dy/ Tb	Ta-Re	1.3E10/ 3.3E9	5.6E10	¹⁵² Dy 1	3.7E10	3.7E8	20	1.1E11	2.2E10	RILIS Dy
therapy	¹⁴⁹ Tb 4.1h	¹⁴⁹ Tb	Ta-Re	1.1E10	6.0E10	¹⁴⁹ Tb 1	3.8E10	3.8E8	20	1.2E11	2.4E10	Chemical purification

RIPS workshop - 27-28 Sept 23 – ORNL

22

27 EU P

Prisman

⁴⁰ Pr-PET/ ger therapy	¹⁴⁰ Nd 3.4d	¹⁴⁰ Nd	Ta-Re	1.8E9	2.0E10	¹⁴⁰ Nd 5	1.2E10	6.0E8	20	2.0E10	4.0E9	Chemical purification
- therapy	⁸⁹ Sr 50.5d	⁸⁹ Sr	UCX-Re	1.2E10	2.3E9	⁸⁹ Sr 5	2.0E9	1.0E8	20	2.7E9	5.4E8	Only mass searation
PET	⁸² Sr 25.5d	⁸² Sr	UCX-Re	3.6E10	4.6E9	⁸² Sr 5	1.7E9	8.5E7	20	2.0E9	4.0E8	Only mass separation
- therapy	⁷⁷ As 38.8h	⁷⁷ As	UCX- VD5	5.7E9	1.1E10	⁷⁷ As 5	5.8E9	2.9E8	20	9.4E9	1.4E9	Chemical purification
PET	⁷⁴ As 17.8d	⁷⁴ As	Y ₂ O ₃ -VD5	6.5E9	1.2E9	⁷⁴ As 5	3.8E8	1.9E7	20	4.5E8	9.0E7	Chemical purif
PET	⁷² As 26.0d	⁷² As	Y ₂ O ₃ -VD5	1.6E10	2.8E10	⁷² As 5	9.1E9	4.6E8	20	1.5E10	3.0E9	Chemical purification
PET	⁷¹ As 65.3h	$^{71}\mathrm{As}$	Y ₂ O ₃ -VD5	1.8E10	1.8E10	⁷¹ As 5	5.9E9	3.0E8	20	8.0E9	1.6E9	Chemical purification
3 therapy	⁶⁷ Cu 61.9h	⁶⁷ Cu	UCX-Re	2.7E9	3.4E9	⁶⁷ Cu 7	1.5E9	1.1E8	20	2.7E9	5.4E8	Chemical purification
PET	⁶⁴ Cu 12.7h	⁶⁴ Cu	Y ₂ O ₃ -VD5	1.1E10	2.3E10	⁶⁴ Cu 5	7.1E9	3.6E8	20	2.1E10	3.6E9	Chemical purification
l, dosimetry	⁶¹ Cu 3.3h	⁶¹ Cu	Y ₂ O ₃ -VD5	7.7E9	1.7E10	⁶¹ Cu 5	5.1E9	2.6E8	20	2.1E10	4.0E9	Only mass separation
3 therapy	⁴⁷ Sc 3.4d	47 _{Sc}	Ti	6.4E10	5.0E10	⁴⁷ Sc 5	4.2E10	2.1E9	20	5.9E10	1.2E10	Evaporation
PET	⁴⁴ Sc 4.0h	⁴⁴ Sc	Ti	4.4E10	6.6E10	⁴⁴ Sc 6.4	5.7E10	2.9E9	20	1.6E11	3.2E10	Evaporation
PET	¹¹ C 20.3m	¹¹ CO	NaF-LiF- VD5 [◊]	-	-	- 15	-	1.4E9	-	-	4.2E9	Only mass separation

The idea in the back of PRISMAP : The European Medical Radionuclide Programme

Element	z	Isotope	Property / Application	Imaging/Treatment/ Generator	Production reaction
Sc	21	44g/m	PET	I	⁴⁴ Ca(p,n) or ⁴⁴ Ca(d,2n)
Sc	21	47	b ⁻ therapy, SPECT	I/T	⁴⁶ Ca(n,g) ⁴⁷ Ca(b ⁻)
Cu	29	64	PET	I	⁶⁴ Ni(p,n) or ⁶⁴ Ni(d,2n)
Cu	29	67	b ⁻ therapy, SPECT	I/T	⁶⁸ Zn(p,2p) or ⁷⁰ Zn(p,a)
Ag	47	111	b ⁻ therapy, SPECT, TDPAC	I/T	¹¹⁰ Pd(n,g) ¹¹¹ Pd(b ⁻) or ¹¹⁰ Pd(d,n)
La	57	135	Auger emitter	т	¹³⁵ Ba(p,n)- or ^{nat} Ta(p,spall)+mass separation
Tb	65	149	a therapy, PET	I/T	^{nat} Ta(p,spall) +mass separation
Tb	65	152	PET	1	^{nat} Ta(p,spall)+mass separation
Tb	65	155	Auger emitter, SPECT	I	^{nat} Ta(p,spall)+mass separation
Tb	65	161	b ⁻ therapy, SPECT	I/T	¹⁶⁰ Gd(n,g)b ⁻
Dy	66	166	Generator for ¹⁶⁶ Ho (b ⁻ , SPECT)	G	¹⁶⁴ Dy(n,g)(n,g)
Er	68	165	Augeremitter	Т	¹⁶⁵ Ho(p,n)
Tm	69	165	Generator for ¹⁶⁵ Er (Auger em.)	G	^{nat} Ta(p,spall)+mass separation
Er	68	169	b ⁻ therapy	Т	HSA ¹⁶⁸ Er(n,g) +mass separation
Yb	70	175	b ⁻ therapy, (SPECT)	Т	HSA ¹⁷⁴ Yb(n,g) +mass separation
Pt	78	195m	Auger emitter, SPECT	I/T	¹⁹⁴ Pt(n,g)
Bi	83	213	a therapy	Т	²²⁵ Ac generator
At	85	211	a therapy	Т	²⁰⁹ Bi(a,2n)
Ac	89	225	a therapy	Т	²²⁹ Th generator
Ac	89	225	a therapy	Т	²³² Th(p,spall)+mass separation

A formalized ALARA approach is vital for a successful Radiation Protection of over 10'000 Radiation Workers and is supported and enforced by the CERN management.

Optimization at CERN is consistently implemented from design, operation to dismantling of facilities at various levels depending on the radiological risks

Group 1 criteria define ALARA level

Individual dose equi.	Loval I	100 μSv	Lovel II	1 mSv	Level III
Collective dose equi.	Leveri	500 μSv	Level II	5 mSv	Level III

Group 2 criteria are the **bases of a radiological risk assessment** (including accidents and incident scenarios) by the RSO and HSE-RP prior to the final ALARA level classification of the intervention.

Ambient dose equivalent rate		50 μSv/hr		2 mSv/hr	
Airborne activity in CA	Level I	5 CA	Level II	200 CA	Level III
Surface contamination in CS		10 CS		100 CS	

Operational RP at MEDICIS - Heinz VINCKE

Beam – target interaction and chemical aspects

Gas target (ie N₂ + trace of O₂ for ¹⁴N(p, α)¹¹CO₂)

Cyclotron target transfer into Isotope mass separation unit

M. Stokely, BTI Targetry

https://youtu.be/p3sjf7ZMPZQ

http://isotopes.lanl.gov/

26

