Introduction to Superspace symmetry

Margarida Henriques

Single Crystal Neutron Diffraction Data Reduction and Analysis June 22, 2024 ORNL

Diffraction pattern

- The diffraction pattern does not show 3D lattice character anymore: the translation symmetry is violated in a specific, regular way
- One or more additional (modulation) vectors must be added to the reciprocal base to index all diffraction spots

Additional diff spots

$$\mathbf{Q} = h\mathbf{a}_1^* + k\mathbf{a}_2^* + l\mathbf{a}_3^* + m\mathbf{q} = \mathbf{H} + m\mathbf{q}$$

$$\mathbf{q} = \alpha \mathbf{a}^* + \beta \mathbf{b}^* + \gamma \mathbf{c}^*$$

Diffraction pattern of Na₂CO₃ Reconstructed images (precession-like view)

 α, β, γ all rational \rightarrow commensurate structure

 α, β, γ at least one irrational \rightarrow *incommensurate structure*

Diffraction pattern

Additional diffraction spots:

Modulated structures:

"*Gittergeister*" U.Dehlinger, *Z. Kristallogr.* (1927) **65** 615–31. "*Satellites*" G.D.Preston *Proc. R. Soc.* (1938) **167** 526–38.

2n+1. The normal reflexions occur when $c = 2\pi$, 4π , etc., i.e. when m = 2n+1, 2(2n+1), etc., and each of these is accompanied by two satellites, one on either side, when $c = 2\pi \left(1 \pm \frac{1}{2n+1}\right), 2\pi \left(2 \pm \frac{1}{2n+1}\right)$, etc. These are the only spectra which arise. The presence of a pair of satellites associated with each normal reflexion is a consequence of our original assumption involving a simple harmonic distortion. A less simple type of distortion

M. Korekawa (1967) *Theorie der Satellitereflexe Habilitationschrift*(München, Germany: Ludwigs-Maximilians-University).
Korekawa & Jagodzinski (1967), *Schweitz.Miner.Petrogr.Mitt.*, 47, 269-278. *The theory of satellite reflections due to various types of modulation waves*.

Composite crystals:

S. van Smallen, (1991), Phys. Rew. B, **43**, 11330-11341.

E. Makovicky & B.G.Hide, (1992), *Material Science Forum*, **100&101**, 1-100.

Diffraction pattern

Composite character of <u>pure metals</u> under high pressure.

Nelmes, Allan, Mc Mahon & Belmonte, *Phys.Rev.Lett.* (1999), **83**, 4081-4084. Barium IV.

Schwarz, Grzechnik, Syassen, Loa & Hanfland, *Phys.Rev.Lett.* (1999), **83**, 4085-4088. Rubidium IV.

Modulated protein crystals - profilic:actin

C. E. Schutt, U. Lindberg, J. Myslik and N. Strauss, *Journal of Molecular Biology*, (1989), **209**, 735-746.

J. J. Lovelace, K. Narayan, J. K. Chik, H. D. Bellamy, E. H. Snell, U. Lindberg, C. E. Schutt and G. E. O. Borgstahl, *J. Appl. Cryst.* (2004). **37**, 327-330.

Special importance: magnetic materials – helical, cycloidal, skyrmion ordering of magnetic moments

• Superspace theory by P.M. De Wolff, A. Janner, T. Jansen

- The atomic parameters are generally different from cell to cell
- It can be described in a superspace by a periodic modulation function

$$p(x_4) = A_0 + \sum_n A_{s,n} \sin(2\pi n x_4) + \sum_n A_{c,n} \cos(2\pi n x_4)$$

 $p(x_4)$ is the modulated parameter or spin, and x_4 is the 4th superspace coordinate and $p(x_4+1) = p(x_4)$

Superspace theory in solution, refinement, and interpretation of modulated structures:

- calculation of structure factors
- Fourier synthesis in (3+d) superspace
- Calculation of geometrical characteristics (distances, angles, BVS) for modulated structures

P.M. de Wolff, Acta Cryst. (1974). A30, 777-785 - de Wolff's sections

Substitutional modulation:

Modulation of atomic position:

Each individual atom having density:

$$\rho_{\nu}(\mathbf{r}) = \sum_{n_1=0}^{N_1-1} \sum_{n_2=0}^{N_2-1} \sum_{n_3=0}^{N_3-1} \rho_{\nu}^{A}(\mathbf{r}) * \delta(\mathbf{r} - \mathbf{r}_{\nu} - n_1 \mathbf{a}_1 - n_2 \mathbf{a}_2 - n_3 \mathbf{a}_3)$$

makes the following contribution to the structure factor:

$$F_{\nu}(\mathbf{Q}) = f_{\nu}(|\mathbf{Q}|) \exp(2\pi i \mathbf{Q} \cdot \mathbf{r}_{\nu}) \sum_{n_{1}=0}^{N_{1}-1} \sum_{n_{2}=0}^{N_{2}-1} \sum_{n_{3}=0}^{N_{3}-1} \exp\{2\pi i \mathbf{Q} \cdot (n_{1}\mathbf{a}_{1} + n_{2}\mathbf{a}_{2} + n_{3}\mathbf{a}_{3})\} =$$

$$f_{\nu}(|\mathbf{Q}|)\exp(2\pi i\mathbf{Q}\cdot\mathbf{r}_{\nu})\frac{\sin\pi N_{1}\mathbf{Q}\cdot\mathbf{a}_{1}}{\sin\pi\mathbf{Q}\cdot\mathbf{a}_{1}}\frac{\sin\pi N_{2}\mathbf{Q}\cdot\mathbf{a}_{2}}{\sin\pi\mathbf{Q}\cdot\mathbf{a}_{2}}\frac{\sin\pi N_{3}\mathbf{Q}\cdot\mathbf{a}_{3}}{\sin\pi\mathbf{Q}\cdot\mathbf{a}_{3}}\\\exp\left\{\pi i\mathbf{Q}\cdot\left((N_{1}-1)\mathbf{a}_{1}+(N_{2}-1)\mathbf{a}_{2}+(N_{3}-1)\mathbf{a}_{3}\right)\right\}$$

 $f_{v}(|\mathbf{Q}|)$... atom form factor

For
$$N_i >> 1 \rightarrow$$
 principal maxima for $\mathbf{Q} = h_1 \mathbf{a}_1^* + h_2 \mathbf{a}_2^* + h_3 \mathbf{a}_3^*$ $h_i \dots$ integers $\mathbf{a}_i \cdot \mathbf{a}_j^* = \delta_{ij}$

Positional modulation – longitudinal, one harmonic wave

$$\mathbf{r}_{v}(\mathbf{n}) = \mathbf{r}_{v0} + \mathbf{U}_{v} \sin\left[2\pi\mathbf{q}(\mathbf{r}_{v0} + \mathbf{n})\right]$$
$$\rho_{v}(\mathbf{r}) = \sum_{n_{1}=0}^{N_{1}-1N_{2}-1N_{3}-1} \sum_{n_{3}=0}^{N_{0}} \rho_{v}^{A}(\mathbf{r}) * \delta(\mathbf{r} - \mathbf{r}_{v}(\mathbf{n}) - n_{1}\mathbf{a}_{1} - n_{2}\mathbf{a}_{2} - n_{3}\mathbf{a}_{3})$$

Fourier transform:

$$F_{\nu}(\mathbf{Q}) = f_{\nu}(|\mathbf{Q}|) \exp(2\pi i \mathbf{Q} \cdot \mathbf{r}_{\nu 0}) \sum_{n_{1}=0}^{N_{1}-1} \sum_{n_{2}=0}^{N_{2}-1} \sum_{n_{3}=0}^{N_{3}-1} \exp\{2\pi i \mathbf{Q} \cdot (\mathbf{U}_{\nu} \sin[2\pi \mathbf{q}(\mathbf{r}_{\nu 0} + \mathbf{n})] + \mathbf{n})\}$$

Positional modulation – longitudinal, one harmonic wave

Weak modulation

Positional modulation – longitudinal, one harmonic wave

Strong modulation

Occupational modulation – one harmonic wave

Occupational modulation – one harmonic wave

$$\rho^{A}(\mathbf{r},\mathbf{n}) = \left[1 + \cos 2\pi \mathbf{q} \cdot (\mathbf{r}_{v} + \mathbf{n})\right] \rho^{A}(\mathbf{r})/2 = \left[1 + \frac{1}{2} \left\{ \exp\left(2\pi i \mathbf{q} \cdot (\mathbf{r}_{v} + \mathbf{n})\right) + \exp\left(-2\pi i \mathbf{q} \cdot (\mathbf{r}_{v} + \mathbf{n})\right) \right\} \right] \rho^{A}(\mathbf{r})/2$$

The contribution to the structure factor is:

$$F_{\nu}(\mathbf{Q}) = \frac{f_{\nu}(|\mathbf{Q}|)}{2} \exp(2\pi i \mathbf{Q} \cdot \mathbf{r}_{\nu}) \sum_{n_{1}=0}^{N_{1}-1} \sum_{n_{2}=0}^{N_{2}-1} \sum_{n_{3}=0}^{N_{3}-1} \exp\{2\pi i \mathbf{Q} \cdot (n_{1}\mathbf{a}_{1} + n_{2}\mathbf{a}_{2} + n_{3}\mathbf{a}_{3})\} + \frac{f_{\nu}(|\mathbf{Q}|)}{2} \exp(2\pi i (\mathbf{Q} \pm \mathbf{q}) \cdot \mathbf{r}_{\nu}) \sum_{n_{1}=0}^{N_{1}-1} \sum_{n_{2}=0}^{N_{2}-1} \sum_{n_{3}=0}^{N_{3}-1} \exp\{2\pi i (\mathbf{Q} \pm \mathbf{q}) \cdot (n_{1}\mathbf{a}_{1} + n_{2}\mathbf{a}_{2} + n_{3}\mathbf{a}_{3})\}$$

Main reflections at $\mathbf{Q} = h_1 \mathbf{a}_1^* + h_2 \mathbf{a}_2^* + h_3 \mathbf{a}_3^*$

Satellite reflections at
$$\mathbf{Q} = h_1 \mathbf{a}_1^* + h_2 \mathbf{a}_2^* + h_3 \mathbf{a}_3^* \pm \mathbf{q}$$

Occupational modulation – one harmonic wave

Occupational modulation – crenel function

Occupational modulation – crenel function

Composite structure – no mutual modulation

Composite structure – no mutual modulation

Composite structure – mutual modulation

Trivial symmetry operator - translation symmetry :

$$\mathbf{R} = \mathbf{E}, \quad \mathbf{t} = \sum_{i=1}^{3+d} n_i \mathbf{A}_i$$

Generally, these conditions are also used for space group in (3+d) dimensional space.

de Wolff construction leads to a specific simplification: superspace groups are in fact 3+d reducible subgroups of more general (3+d) dimensional space groups

Superspace symmetry operation:

 $\Gamma = \left(\left| \begin{array}{c|c} \Gamma_E & 0 \\ \hline \Gamma_M & \Gamma_L \end{array} \right|, \left| \begin{array}{c} \mathbf{s}_E \\ \mathbf{s}_I \end{array} \right| \right)$

- $\Gamma_E, \Gamma_M, \Gamma_I$ (3x3) external, (dx3) mixed and (dxd) internal blocks of the rotational part of the superspace symmetry operation
 - $\mathbf{s}_{E}, \mathbf{s}_{I}$ 3x1 external and (dx1) internal block of the translation part of the superspace symmetry operation

Application of superspace operation to a point **x**:

$$\mathbf{\Gamma}\mathbf{x} = \begin{bmatrix} \mathbf{\Gamma}_E & \mathbf{0} \\ \mathbf{\Gamma}_M & \mathbf{\Gamma}_I \end{bmatrix} \begin{bmatrix} \mathbf{x}_E \\ \mathbf{x}_I \end{bmatrix} + \begin{bmatrix} \mathbf{s}_E \\ \mathbf{s}_I \end{bmatrix}$$

 $\mathbf{x}_{E}, \mathbf{x}_{I}$ external and internal coordinates

In the (3+1) dimensional superspace: 4 components (x_1, x_2, x_3, x_4)

Superspace symmetry operation:

$$\Gamma = \left(\begin{bmatrix} \Gamma_E & 0 \\ \Gamma_M & \Gamma_I \end{bmatrix}, \begin{bmatrix} \mathbf{s}_E \\ \mathbf{s}_I \end{bmatrix} \right)$$

From the basic symmetry as determined from main reflections Internal and external spaces do not mix

From the metric properties (unitary conditions) : $\Gamma_M = q \Gamma_E - \Gamma_I q$

<u>**q**</u> and <u>**S**</u>: New!

S_i: the shift of the modulation wave in the internal space. It affects reflection conditions for the satellites

q can be split into two parts: rational and irrational: $q_i \Gamma_E - \Gamma_I q_i = 0$ and $q_r \Gamma_E - \Gamma_I q_r = \Gamma_M$

The **rational part** is made of zeros and specific fractions 1/2, 1/3 **fixed by symmetry**. \rightarrow complete separation of the external and internal case

The equations $q_i \Gamma_E - \Gamma_I q_i = 0$ and $q_r \Gamma_E - \Gamma_I q_r = \Gamma_M$ can be used to find all possible modulation vectors compatible with a superspace symmetry operation:

Examples for (3+1)d superspace

1- Inversion center:

$$\boldsymbol{\Gamma}_{E} = \begin{bmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{bmatrix} \quad \boldsymbol{\Gamma}_{I} = \pm 1 \implies \begin{bmatrix} \alpha, \beta, \gamma \end{bmatrix} \begin{bmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{bmatrix} \mp \mathbf{1} \begin{bmatrix} \alpha, \beta, \gamma \end{bmatrix} = \begin{bmatrix} 0, 0, 0 \end{bmatrix}$$

For $\Gamma_I = +1 \Rightarrow \alpha = \beta = \gamma = 0 \rightarrow \mathbf{q} = (0,0,0)$ – no incommensurate modulation

For $\Gamma_I = -1 \Rightarrow \alpha \neq 0, \beta \neq 0, \gamma \neq 0' \rightarrow \mathbf{q} = (\alpha, \beta, \gamma)$ – all three components can have non-zero values

2- Two-fold axis along b:

$$\Gamma_{E} = \begin{bmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{bmatrix} \quad \Gamma_{I} = \pm 1 \quad \Rightarrow \quad [\alpha, \beta, \gamma] \begin{bmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{bmatrix} \mp 1[\alpha, \beta, \gamma] = [0, 0, 0]$$

For $\Gamma_I = +1 \Rightarrow \alpha = \gamma = 0$ $\beta \neq 0 \rightarrow \mathbf{q} = (0, \beta, 0) - \text{axial monoclinic case}$

For $\Gamma_I = -1 \Rightarrow \alpha \neq 0, \gamma \neq 0, \beta = 0, \rightarrow \mathbf{q} = (\alpha, 0, \gamma) - \text{planar monoclinic case}$

What about the rational part of q?

$$\mathbf{q}_{r}\mathbf{\Gamma}_{E} - \mathbf{\Gamma}_{I}\mathbf{q}_{r} = \mathbf{\Gamma}_{M} \qquad \begin{bmatrix} \alpha, \beta, \gamma \end{bmatrix} \begin{bmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{bmatrix} \mp \mathbf{1}[\alpha, \beta, \gamma] = [n_{1}, n_{2}, n_{3}]$$

For $\Gamma_{\gamma} = +1 \Rightarrow \alpha = 0 \land \alpha = 1/2$ $\gamma = 0 \land \gamma = 1/2 - axial monoclinic case$

For
$$\Gamma_{I} = -1 \Rightarrow \beta = 0 \land \beta = 1/2$$
 – planar monoclinic case

Bilbao Crystallographic Server in forthcoming schools and workshops

News:

New Article

05/2024: Xu *et al.* "Catalog of topological phonon materials". Science (2024) **384**, 6696

bilbao crystallographic server

Contact us A	About us	Publications	How to cite the server					
Space-group symmetry								
GENPOS	Generators ar	nd General Positions of Space G	Groups					
WYCKPOS	Wyckoff Posit	ions of Space Groups						
HKLCOND	Reflection cor	Reflection conditions of Space Groups						
MAXSUB	Maximal Subg	Maximal Subgroups of Space Groups						
SERIES	Series of Max	Series of Maximal Isomorphic Subgroups of Space Groups						
WYCKSETS	Equivalent Se	ts of Wyckoff Positions						
NORMALIZER	Normalizers o	f Space Groups						
KVEC	The k-vector t	ypes and Brillouin zones of Spa	ce Groups					
SYMMETRY OPERATIONS	Geometric inte	erpretation of matrix column rep	resentations of symmetry operations					
IDENTIFY GROUP	Identification of	of a Space Group from a set of g	enerators in an arbitrary setting					

Bilbao Crystallographic Server -> k-vector types and Brillouin zones

The k-vector types of space group *P*2/*m* (10) [unique axis b]

Unique axis c description is available here

(Table for arithmetic crystal class 2/mP)

 $\mathsf{P12/m1}(\mathsf{P2/m})-\mathsf{C_{2h}}^1(10)\ ,\ \mathsf{P12_1/m1}(\mathsf{P2_1/m})-\mathsf{C_{2h}}^2(11), \mathsf{P12/c1}(\mathsf{P2/c})-\mathsf{C_{2h}}^4(13), \mathsf{P12_1/a1}(\mathsf{P2_1/c})-\mathsf{C_{2h}}^5(14)$

Reciprocal space group (P12/m1)*, No.10

k-vector description			ITA description				
Label	Coefficients	Wyckoff Position		Position	Coordinates		
LD	0,u,0	2	i	2	0,y,0 : 0 < y < 1/2		
W	1/2,u,0	2	j	2	1/2,y,0 : 0 < y < 1/2		
V	0,u,1/2	2	k	2	0,y,1/2 : 0 < y < 1/2		
U	-1/2,u,1/2	2	I	2	-1/2,y,1/2 : 0 < y < 1/2		
U~U ₁		2	I	2	1/2,y,1/2 : 0 < y < 1/2		
F	v,0,u	2	m	m	x,0,z : 0 < z < 1/2; -1/2 < x <= 1/2 U U x,0,0 : 0 < x < 1/2 U U x,0,1/2 : 0 < x < 1/2		
G	v,1/2,u	2	n	m	x,1/2,z : 0 < z < 1/2; -1/2 < x <= 1/2 U U x,1/2,0 : 0 < x < 1/2 U U x,1/2,1/2 : 0 < x < 1/2 U		
GP	u,v,w	4	0	1	x,y,z : 0 < z < 1/2; -1/2 < x <= 1/2; 0 < y < 1/2 U U x,y,0 : 0 < x < 1/2; 0 < y < 1/2 U U x,y,1/2 : 0 < x < 1/2; 0 < y < 1/2 U		

parameter relations: x=u, y=v, z=w

Unique axis b description has been calculated using CDML's description.

Superspace symmetry in reciprocal space

Invariance with respect to the superspace symmetry operation:

$$\tilde{\rho}(\Gamma \mathbf{R} + \mathbf{s}) = \sum_{\mathbf{H}} F(\mathbf{H}) \exp\left[-2\pi (\Gamma \mathbf{R} + \mathbf{s}) \cdot \mathbf{H}\right] = \tilde{\rho}(\mathbf{R}) \Rightarrow F(\mathbf{H} \cdot \Gamma) = F(\mathbf{H}) \exp\left(-2\pi \mathbf{H} \cdot \mathbf{s}\right)$$

The effect of superspace symmetry on the structure factor of a modulated crystal is a direct generalization of the effect of space groups symmetry on periodic 3d crystals.

Laue symmetry:
$$|F(\mathbf{H},\mathbf{\Gamma})| = |F(\mathbf{H})| \exp(-2\pi \mathbf{H} \cdot \mathbf{s})| = |F(\mathbf{H})|$$

The diffraction pattern has pure rotational symmetry according to the point group of the crystal class of the superspace group.

Superspace symmetry in reciprocal space

Translation part

While the point symmetry of the pattern is independent of the translational parts of the symmetry operator, non zero-intrinsic parts lead to systematic extinctions of Bragg reflections:

 $\mathbf{H}.\boldsymbol{\Gamma} = \mathbf{H} \implies F(\mathbf{H}) = F(\mathbf{H})\exp(-2\pi\mathbf{H}\cdot\mathbf{s})$

Reflection present only if the phase factor is 1, that is $\mathbf{H} \cdot \mathbf{s} = n$

(0,0,0,0)	$\binom{m}{1}$	-
(0,0,0,1/2)	$\binom{m}{s}$	m = 2n
(1/2,0,0,0)	$\begin{pmatrix} a \\ 1 \end{pmatrix}$	h = 2n
(1/2,0,0,1/2)	$\begin{pmatrix} a \\ s \end{pmatrix}$	h+m=2n
(0, 1/2, 0, 0)	$\begin{pmatrix} b\\1 \end{pmatrix}$	l = 2n
(0, 1/2, 0, 1/2)	$\begin{pmatrix} b\\s \end{pmatrix}$	l + m = 2n
(1/2, 1/2, 0, 0)	$\binom{n}{1}$	h+k=2n
(1/2, 1/2, 0, 1/2)	$\binom{n}{s}$	h+k+m=2n
	(~)	

Symbol

Reflection condition for

Superspace groups

For (3+1) dimensional superspace groups

Originally proposed by P.M.de Wolff, T. Janssen and A. Janner, *Acta Cryst.* (1981). A37, 625-636 Later modified and included into International Tables for Crystallography, volume C.

Later mouned and included into international rapies for Crystallography, volu

For (3+1), (3+2) and (3+3) dimensional space groups

H.T. Stokes, B. Campbell and S. van Smaalen, Acta Cryst. A47, 45-55.

Examples:

 $Pmna(0,0,\gamma)s00$ $Pmna(0,1/2,\gamma)s00$ $Pmna(0,1/2,\gamma_{1})s00(0,0,\gamma_{2})000$ $Pmna(1/2,\beta_{1},\gamma_{1})q0q(1/2,\overline{\beta}_{1},\gamma_{1})qq0(0,1/2,\gamma_{2})000$

s _l	1/2	1/2 1/3		1/6	
Symbol	S	t	q	h	

Superspace symmetry in direct space

Two symmetry-related atoms in the unit cell: $(Xe,Xi) \rightarrow (Xe', Xi')$

$$\mathbf{\Gamma}\mathbf{x} = \begin{bmatrix} \mathbf{\Gamma}_{E} & \mathbf{0} \\ \mathbf{\Gamma}_{M} & \mathbf{\Gamma}_{I} \end{bmatrix} \begin{bmatrix} \mathbf{x}_{E} \\ \mathbf{x}_{I} \end{bmatrix} + \begin{bmatrix} \mathbf{s}_{E} \\ \mathbf{s}_{I} \end{bmatrix} \implies \mathbf{x}_{E}' = \mathbf{\Gamma}_{E}\mathbf{x}_{E} + \mathbf{s}_{E} \qquad \mathbf{x}_{I}' = \mathbf{\Gamma}_{I}\mathbf{x}_{I} + \mathbf{\Gamma}_{M}\mathbf{x}_{E} + \mathbf{s}_{I}$$

The modulation function of a symmetry related atom is derived from the original one.

For a displacement modulation:

$$\mathbf{u}'(\mathbf{x}'_{I}) = \mathbf{\Gamma}_{E}\mathbf{u}(\mathbf{x}_{I}) \implies \mathbf{u}'(\mathbf{x}'_{I}) = \mathbf{\Gamma}_{E}\mathbf{u}[\mathbf{\Gamma}_{I}^{-1}(\mathbf{x}'_{I} - \mathbf{\Gamma}_{M}\mathbf{x}_{E} - \mathbf{s}_{I})]$$

It simplifies for (3+1)d superspace!

Superspace symmetry in direct space

For the (3+1)d case (general position):

$$\boldsymbol{\Gamma} = \left(\begin{bmatrix} \mathbf{R} & \mathbf{0} \\ \mathbf{m}^T & \boldsymbol{\varepsilon} \end{bmatrix}, \begin{bmatrix} \mathbf{s} \\ \boldsymbol{\delta} \end{bmatrix} \right)$$

where $\varepsilon = \pm 1$ and $\varepsilon^{-1} = \varepsilon$; **m**: rational part of **q**

Modulation functions of a symmetry related atom:

Occupational modulation:
$$o(x_4) = o_0 + \sum_n (o_{ns} \sin 2\pi n x_4 + o_{nc} \cos 2\pi n x_4)$$
 $o'[x_4] = o[\varepsilon(x_4 - \mathbf{m} \cdot \mathbf{r} - \delta)]$

Position modulation:
$$\mathbf{r}(x_4) = \mathbf{r}_0 + \mathbf{u} = \mathbf{r}_0 + \sum_n (\mathbf{U}_{ns} \sin 2\pi n x_4 + \mathbf{U}_{nc} \cos 2\pi n x_4) \qquad \mathbf{r}'[x_4] = \mathbf{R}\mathbf{r}_0 + \mathbf{R}\mathbf{u}[\varepsilon(x_4 - \mathbf{m}\cdot\mathbf{r} - \delta)]$$

Superspace symmetry in direct space

For the (3+1)d case (special positions):

$$\Gamma = \left(\begin{bmatrix} \mathbf{R} & \mathbf{0} \\ \mathbf{m}^T & \varepsilon \end{bmatrix}, \begin{bmatrix} \mathbf{s} \\ \delta \end{bmatrix} \right) \quad \text{where } \varepsilon = \pm \mathbf{1}$$

Modulation functions of a symmetry related atom:

Occupational modulation:
$$o(x_4) = o_0 + \sum_n (o_{ns} \sin 2\pi n x_4 + o_{nc} \cos 2\pi n x_4)$$
 $o[x_4] = o[\varepsilon(x_4 - \mathbf{m} \cdot \mathbf{r} - \delta)]$
Position modulation: $\mathbf{u}(x_4) = \sum_n (\mathbf{U}_{ns} \sin 2\pi n x_4 + \mathbf{U}_{nc} \cos 2\pi n x_4)$ $\mathbf{u}[x_4] = \mathbf{Ru}[\varepsilon(x_4 - \mathbf{m} \cdot \mathbf{r} - \delta)]$

Example : $Pmna(01/2\gamma)s00$

The rational part of the modulation vector represents an additional centring. It is much more convenient to use the supercentred cell instead of the explicit use of the rational part of the modulation vector.

$$\mathbf{u}[x_4] = \mathbf{R}\mathbf{u}[\varepsilon(x_4 - \mathbf{m}.\mathbf{r} - \delta)]$$
$$\mathbf{u}[x_4] = \mathbf{R}\mathbf{u}[\varepsilon(x_4 - \delta)]$$

Edit basic parameters (cell, symmetry, etc.)							
Cell Symmetry Co	omposition Multipole parameters	Magnetic parameters					
Superspace group: Pmna(01/2g)s00 Select from list Origin shift: 0 0 0 0 The operators derived from the group symbol							
(1) x1 x2 x3 x4 (2) -x1+1/2 -x2 x3 (3) -x1+1/2 x2 -x3 (4) x1 -x2 -x3 -x4+ (5) -x1 -x2 -x3 -x4 (6) x1+1/2 x2 -x3+ (7) x1+1/2 -x2 x3+ (8) -x1 x2 x3 x4+1	+1/2 -x2+x4+1/2 +1/2 x2-x4 1/2 +1/2 x2-x4+1/2 +1/2 -x2+x4 /2		Load => <pre><= Add Delete operator Cell centering: P ~ Complete the Make tee Run Stokes & Camp Define local symmetric </pre>	<= Rewrite Clean out ne set st obell SSG-test			

📶 Define/Edit atom parameters

Define Edit Multipole parameters	Modulation parameters Magnetic p	parameters	
# 1 Select atom(s) fi	om list Atom name: Fe1	Atomic type: Fe	
	Parameter: Position	n v	x[rei]=0.25
xsin1 -0.009013 🖂	ysin1 -0.003112 🖂	zsin1 -0.001948 🗸	2[FeI]=0.25 II12[Fe1]=0
xsin2 0.016023	ysin2 -0.01227	zsin2 -0.014205	U23[Fe1]=0
xsin3 -0.016305	ysin3 -0.002562 🖂	zsin3 0.012318	xcosl[Fel]=-0.88722*xsinl[Fel]
xsin4 0.000892	ysin4 -0.016007 🖂	zsin4 0.012573	<pre>ycos1[Fe1]=1.1271*ysin1[Fe1]</pre>
			<pre>zcos1[Fe1]=-0.88722*zsin1[Fe1]</pre>
			xcos2[Fel]=-8.3367*xsin2[Fel]
			ycos2[Fel]=0.11995*ysin2[Fel]
xcos1 0.018107	ycos1 -0.014589	zcos1 -0.009164	zcos3[Fel]=1.442*xsin3[Fel]
xcos2 0.013779	ycos2 -0.014685	zcos2 -0.000894	vcos3[Fel]=-0.69347*vsin3[Fel]
xcos3 -0.003315	ycos3 -0.005474	zcos3 -0.010239	zcos3[Fel]=1.442*zsin3[Fel]
xcos4 0.015595	ycos4 0.016388	zcos4 0.009297	xcos4[Fel]=0.2434*xsin4[Fel]
			ycos4[Fel]=-4.1084*ysin4[Fel]
			zcos4[Fe1]=0.2434*zsin4[Fe1]
Ref	ne all Fix all	Reset Show p/sig(p)	
	Apply site symmetry	Snow symmetry restrictions	Next Waves
	Esc	ОК	

 \times

Struc	ture	Transformations	Settings	Tools	Help			
Mai	in	Cell transfor	mation					-
		Change mo	dulation ve	ctor				
		Origin shift						
30°		Change ena	ntiomorph					
- 6- (A)		Go to a sub	group					
8		Go to super	cell structu	re				
		Go to average 3d structure						
00		Transform to	Transform to the supercentered cell					
		Transform to	Transform to the standard setting					
		Make "a cor	Make "a corrected structure"					
		Edit optiont	iccora	tore				
1 tV		 Structure solution 						
73		> Random search						
B?		> Fourier synthesis						
		Run Contour						
-,		> Import						
		 Refinement 						

Define/Edit atom parameters \times Multipole parameters Modulation parameters Magnetic parameters Define Edit # 1 -Select atom(s) from list Atom name: Fe1 Atomic type: Fe \sim Parameter: Position Previous waves -0.020124 ysin1 0 zsin1 0.006714 xsin1 x[Fel]=0.25 xsin2 -0.019344 ysin2 0 zsin2 0.006935 z[Fe1]=0.25 U12[Fe1]=0 xsin3 0.016579 zsin3 -0.011047 ysin3 0 U23[Fe1]=0 xsin4 0.01158 ysin4 0 -0.000655 zsin4 ysinl[Fel]=0 xcos1[Fe1]=0 zcos1[Fel]=0 ysin2[Fel]=0 xcos2[Fel]=0 ycos1 -0.005206 xcos1 0 zcos1 0 zcos2[Fel]=0 ycos2 -0.002367 xcos2 0 zcos2 0 ysin3[Fel]=0 xcos3[Fel]=0 xcos3 0 ycos3 0.00257 zcos3 0 zcos3[Fel]=0 xcos4 0 ycos4 0.001087 zcos4 0 vsin4[Fel]=0 xcos4[Fel]=0 zcos4[Fe1]=0 Show p/sig(p) Refine all Fix all Reset Show symmetry restrictions Apply site symmetry Next waves OK Esc

🚛 Edit basic parameters (cell, symmetry, etc.)						
Cell Symmetry Co	omposition Multipole parameters	Magnetic paramete	ers			
Superspace group: Origin shift:	Xmna(00g)s00 0 0 0 0			Select from list		
	The o	perators derived from	n the group symbol			
(1) x1 x2 x3 x4 (2) -x1+1/2 -x2 x3- (3) -x1+1/2 x2 -x3- (4) x1 -x2 -x3 -x4+ (5) -x1 -x2 -x3 -x4 (6) x1+1/2 x2 -x3+ (7) x1+1/2 -x2 x3+ (8) -x1 x2 x3 x4+1/	+1/2 x4+1/2 +1/2 -x4 1/2 -1/2 -x4+1/2 -1/2 x4 /2		Load => <= Add	<= Rewrite Clean out set		

Input setting

Centering

none Operators

(-x+1/2,-y,z+1/2,-y+t+1/2); (-x+1/2,y,-z+1/2,y-t); (x,-y,-z,-t+1/2); (-x,-y,-z,-t); (x+1/2,y,-z+1/2,y-t+1/2); (x+1/2,-y,z+1/2,-y+t); (-x,y,z,t+1/2); (x,y,z,t) = (-x,y,z,t+1/2); (-x,y,z,t+1/2

Standard settings

Superspace group: 53.1.10.10 Pmra(0,1/2,g)s00 [Y:1.369] Bravais class: 1.10 Pmrm(0,1/2,g) [JJdW:1.10] Transformation to supercentered setting: As1=as1, As2=2as2+as4, As3=as3, As4=as4

BASIC SPACE GROUP SETTING Modulation vectors: q1=(0,1/2,g) Centering: (0,0,0,0) Non-lattice generators: (-x,y,z,t+1/2); (x+1/2,-y,z+1/2,-y+t); (x+1/2,y,-z+1/2,y-t+1/2) Non-lattice operators: (x,y,z,t); (x,-y,-z,-t+1/2); (-x+1/2,y,-z+1/2,y-t); (-x+1/2,-y,z+1/2,-y+t+1/2); (-x,-y,-z,-t); (-x,y,z,t+1/2); (x+1/2,-y,z+1/2,-y+t); (x+1/2,-y,z+1/2,-y+t); (-x+1/2,-y,z+1/2,-y+t+1/2); (-x,-y,-z,-t); (-x,y,z,t+1/2); (x+1/2,-y,z+1/2,-y+t); (x+1/2,-y,z+1/2,-y+t); (-x+1/2,-y,z+1/2,-y+t); (-x+1/2,-y+z+1/2,-y+t); (-x+1/2,-y+z+1/2,-y+t); (-x+1/2,-y+z+1/2,-y+

SUPERCENTERED SETTING M odulation vectors: Q1=(0,0,G), where G=g Centering: (0,0,0,0); (0,1/2,0,1/2) Non-lattice generators: (-X,Y,Z,T+1/2); (X+1/2,-Y,Z+1/2,T); (X+1/2,Y,-Z+1/2,-T+1/2) Non-lattice operators: (X,Y,Z,T); (X,-Y,-Z,-T+1/2); (-X+1/2,Y,-Z+1/2,-T); (-X+1/2,-Y,Z+1/2,T+1/2); (-X,-Y,-Z,-T); (-X,Y,Z,T+1/2); (X+1/2,-Y,Z+1/2,T+1/2); (-X,-Y,-Z,-T); (-X,Y,Z,T+1/2); (X+1/2,-Y,Z+1/2,T+1/2); (-X,-Y,-Z,-T); (-X,Y,Z,T+1/2); (X+1/2,-Y,Z+1/2,-T); (-X+1/2,-Y,Z+1/2,-T); (-X,Y,Z,T+1/2); (-X,Y,Z,T+1/2); (X+1/2,-Y,Z+1/2,-T); (-X,Y,Z,T+1/2); (-X,Y,Z,T+1/2); (-X,Y,Z,T); (-X,Y,Z,T+1/2); (-X,Y,Z,T); (-X,Y,Z); (-X,Y,Z

FZU Fyzikální ústav Akademie věd České republik

Thank you!

