

Recent Advances of Single Crystal Neutron Diffraction Data Reduction and Analysis

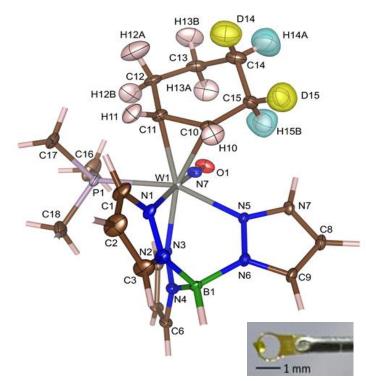
Xiaoping Wang

Neutron Scattering Division Oak Ridge National Laboratory

> Single Crystal Neutron Diffraction Data Reduction and Analysis Workshop

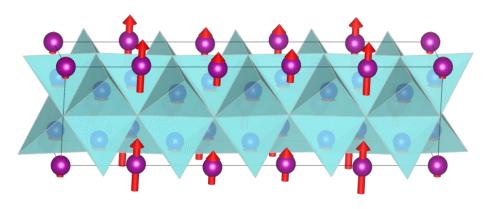
> > ORNL June 22, 2024

ORNL is managed by UT-Battelle, LLC for the US Department of Energy



Single crystal neutron diffraction

Why neutrons?


Weak neutron ~ nuclear interaction E = 81.8 meV at 1.0 Å

- Scattering length b:
 - -Fourier transform of the nuclear density of an atom
 - -b is isotope specific
 - -independent of scattering angle and wavelengths
- Magnetic scattering

0.05 mm³

Neutron (spin $\pm \frac{1}{2}$) ~ (out-shell) electron interaction, strong Q dependence

J. A. Smith, et al. Nature, 581, 288-293 (2020)

A. Pramanick, et al. Phys. Rev. B, 85, 1444412 (2012)

1944 - The birth of single crystal neutron diffraction

LINTON LABORATORIES

Date: May 25, 1944

To: R. L. Doan

From: E. O. Wollan

In re: Diffraction of Neutrons

I would like to attempt to measure the diffraction of neutrons by single crystals. I have brought some equipment with me from Chicago, and Dr. Borst has shown me an opening in the pile at which this work could be done.

I would appreciate obtaining approval to go ahead with this experiment.

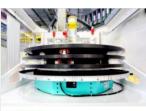
A problem assignment sheet for this work is enclosed.

E. O. Wollan

The original letter Ernest Wollan wrote in 1944 to Richard Doan, director of research at Clinton Laboratories, requesting funding for neutron experiments at the X-10 pile.

** *		ELINT	This Document consists of Pages and P Figures. Th LABORATORIES /of Oppies, Series A. Date May 25, 1944
то	R.	L. Dosn	DEPARTNENT
FROM	Б.	0. Wollan	DEPARTMENT WAY 27 P
	IN RE:	Diffraction of neutrons	DEPARTMENT WAY 27 1944
			to attempt to measure the diffraction of neutrons
			have brought some equipment with me from Chicago,
		and Dr. Borst has shown	ne an opening in the pile at which this work
		could be done.	
		I would appro	ciate obtaining approval to go sheed with this
		experiment.	
			KT Stand
			 Since determines of collations of formation of factors the maximum expression of the located States minutes are interesting of the States of the states of the sources of any submort to an expression of the pressive by here.

The suite of single crystal diffraction instruments at ORNL


- Monochromatic source
 - Point detector record photon/neutron counts using a point counter
 - 1D peak integration using peak profile from step scans
 - Area detector record photon/neutron counts at 2D (x, y) pixel positions
 - 2D and 3D peak integration possible by combining frame images from step scans
- White beam
 - 🕒 Laue
 - [Cylindrical] Image plate 2D (x, y) pixels
 - Spatial and harmonic overlap of higher order reflections
 - Quasi-Laue, limit $\Delta\lambda/\lambda$, for example, to 15%
 - Wavelength-resolved Laue
 - Area detectors with large Q coverage at spallation neutron sources
 - Neutron Time of Flight (TOF) provides wavelength resolution in 3rd dimension

DEMAND Small unit-cell nuclear & magnetic structural studies

WAND² Diffuse-scattering studies of single crystals and time-resolved phase transitions

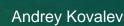
IMAGINE Atomic resolution structures in biology, chemistry and complex materials

CORELLI Detailed studies of disorder in crystalline materials

Atomic-level structures in chemistry, biology, earth science, materials science, condensed matter physics

MANDI

Atomic level structures of proteins, macromolecules and DNA


Single Crystal Diffraction Group – Instrument Scientists

Dean Myles

Flora Meilleur

IMAGINE / MANDI

Andrey Kovalevskyi

Feng Ye

Arianna Minelli

Zachary Morgan **CIS-SNS**

CORELLI

Christina Hoffmann

Xiaoping Wang

TOPAZ

Diffraction Section

CAK RIDGE HIGH FLUX SPALLATION National Laboratory REACTOR SOURCE

Huibo Cao

Single Crystal Diffraction Group

Yan Wu

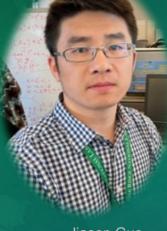
DEMAND / WAND² DEMAND

CIS-HFIR

Postdocs in Single Crystal Diffraction Group

Tori Drago

Gaurav Vishwakarma

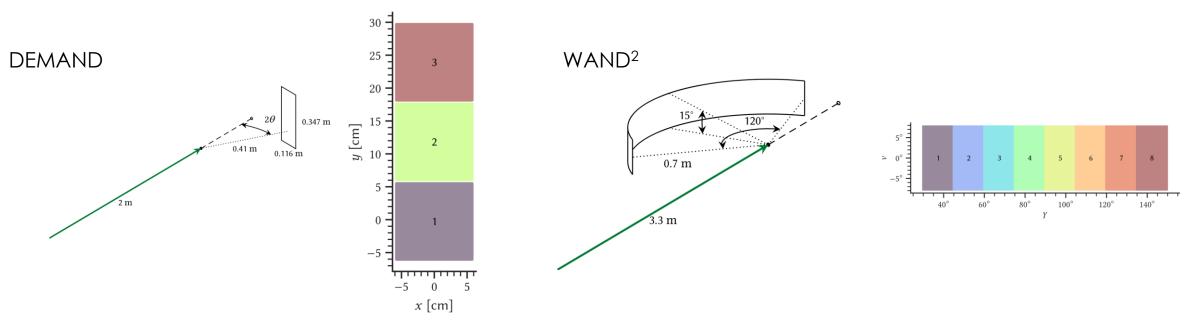


Megan Smart

Sylwia Pawledzio

James Beare

Actional Laboratory HIGH FLUX ISPALLATION NEUTRON SOURCE


Jiasen Guo

Diffraction Section

Single Crystal Diffraction Group

Data acquisition at HFIR

- Monochromatic source
 - Point detector record photon/neutron counts using a point counter
 - 1D peak integration using peak profile from step scans
 - Area detector record photon/neutron counts at 2D (x, y) pixel positions
 - 2D and 3D peak integration possible by combining frame images from step scans

Cao H.B., Chakoumakos B.C., Andrews K.M., Wu Y., Riedel R.A., Hodges J.P., Zhou W., Gregory R., Haberl B., Molaison J.J., Lynn G.W., "<u>DEMAND, a Dimensional Extreme</u> <u>Magnetic Neutron Diffractometer at the High Flux Isotope Reactor</u>", *Crystals*, **9**, 1, 5 (2019)

Actional Laboratory REACTOR SOURCE

Frontzek M., Andrews K.M., Jones A.B., Chakoumakos B.C., Fernandez-Baca J.A., "<u>The Wide Angle Neutron Diffractometer squared (WAND2)</u> - Possibilities and future", *Physica B: Condensed Matter*, **551**, 464-467 (2018)

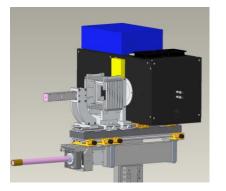
studies

Courtesy of Zach Morgan

DEMAND WAND² Small unit-cell nuclear & magnetic structural and time-resolved phase transitions

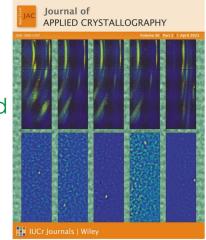
DEMAND HB-3A HFIR

Dimensional Extreme Magnetic Neutron Diffractometer


Four-circle mode Two-axis mode Extreme sample environment

Temperature: 0.03-1300 K Magnetic Field: 0-6 T Pressure: 0-10 GPa Electric field: 0-10000 v/cm

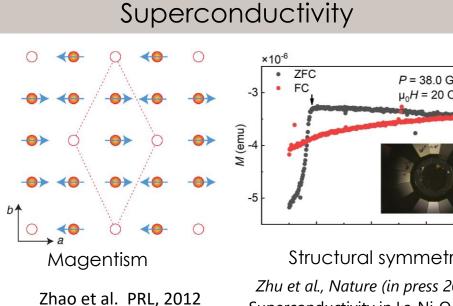
Chakoumakos B.C., Cao H.B., et al., "<u>Four-circle single-crystal neutron</u> <u>diffractometer at the High Flux Isotope Reactor</u>", Journal of Applied Crystallography, 44, 655-658 (2011).


Cao H.B. et al., "<u>DEMAND</u>, a Dimensional Extreme Magnetic Neutron Diffractometer at the High Flux Isotope Reactor", Crystals, 9, 5 (2019).

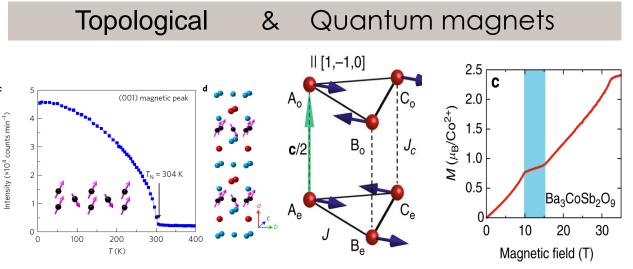
Hao Y., et al., Cao H.B., "<u>Machine-learning-assisted automation of single-crystal neutron diffraction</u>", Journal of Applied Crystallography, 56, 519-525 (2023).

Polarized Neutron diffraction Unpolarized Neutron diffraction

Auto-datareduction Background filtering

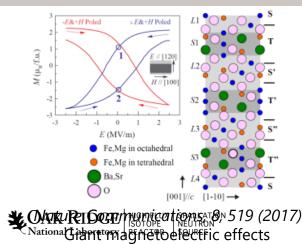


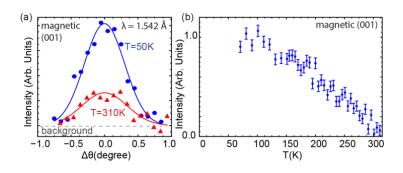
Courtesy of Huibo Cao


Science @ DEMAND

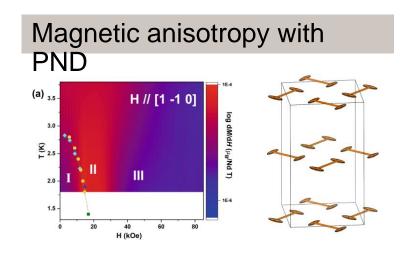
Courtesy of Huibo Cao

P = 38.0 GPa $\mu_0 H = 20 \text{ Oe}$ Structural symmetry Zhu et al., Nature (in press 2024)

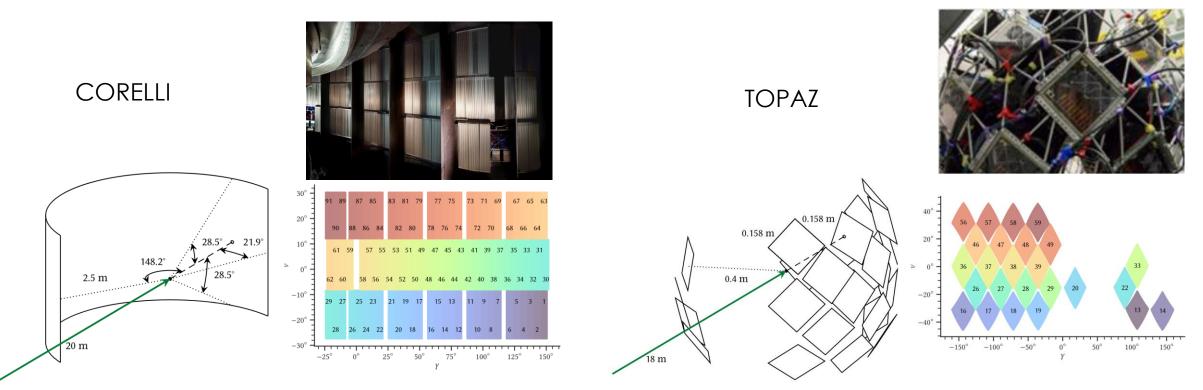

Superconductivity in La₄Ni₃O₁₀


Nature Materials 16, 905 (2017) Magnetic Weyl semi-metal

Nature Communications 9, 2666 (2018) Magnetization plateau


Multifunctional materials

Novel magnetism in thin film


M. Chilcote et al., Adv. Funct. Mater, (in press 2024) Altermagnetic candidate MnTe for spintronics

M.Marshall, et al. Nature Communications 14 (1), 3641 (2023)

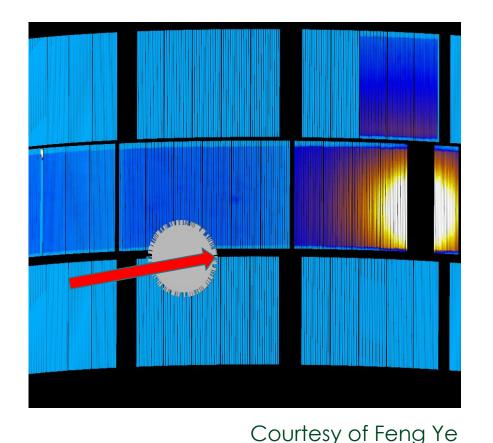
Data acquisition at the SNS

Neutron Time-of-Flight, aka Wavelength-resolved, Laue

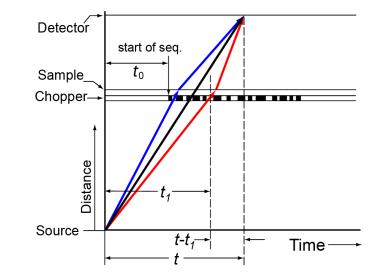
Neutron Time of Flight (TOF) provides wavelength resolution in 3rd dimension

Ye F., Liu Y., Whitfield R.E., Osborn R., Rosenkranz S., "<u>Implementation of cross correlation for energy</u> <u>discrimination on the time-of-flight spectrometer CORELLI</u>", *Journal of Applied Crystallography*, **51**, 2, 315-322 (2018) Schultz A.J., Joergensen M.R., Wang X.P., Mikkelson R.L., Mikkelson D.J., Lynch V.E., Peterson P.F., "Integration of neutron time-of-flight single-crystal Bragg peaks in reciprocal space", *Journal of Applied Crystallography*, **47**, 915-921 (2014).

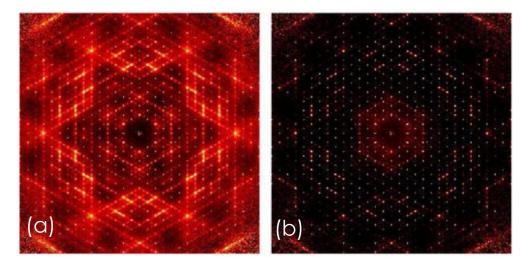
10


Courtesy of Zach Morgan

CORELLI BL-9 SNS


Key Component

CAK RIDGE HIGH FLUX SPALLATION National Laboratory REACTOR SOURCE


Correlation Chopper

The combination of correlation chopper and white beam Laue diffraction allows reconstruction of the elastic signal.

Diffuse scattering of benzil. (a) Total scattering (elastic plus inelastic) recorded at 100 K; (b) Elastic scattering only at 100 K

Quantum Beam Science, 2, 2 (2018); J. Appl. Cryst. 51, 315 (2018)

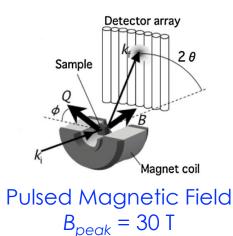
CORELLI BL-9 SNS Sample Environment

Low background top loading CCR 6 K – 750 K

Actional Laboratory

12

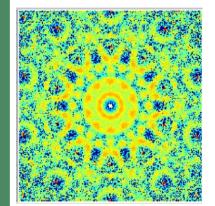
Courtesy of Feng Ye

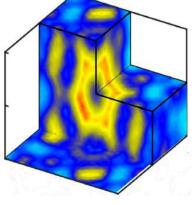

Pressure Cell, $P_{max} = 1.8$ GPa

or Dilfridge insert 100 mK – 300K

³He insert 300 mK – 300K

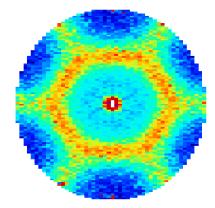
Static Vertical Magnetic Field, $B_{max} = 5 \text{ T}$


High Voltage

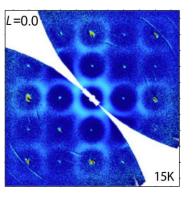


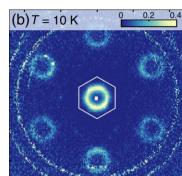
Collection of diffuse scattering studies @ CORELLI

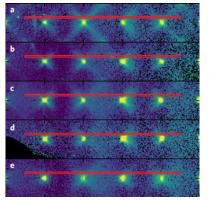
Courtesy of Feng Ye



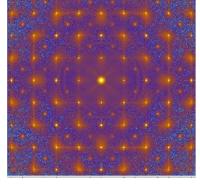
Quasi-crystal i-Tb-Cd (PRB 2023)

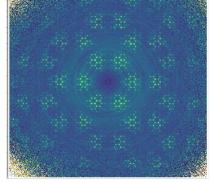


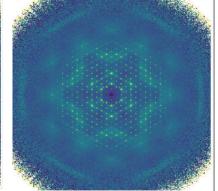

Spin Glass Fe₂TiO₅ (PRB 2021)

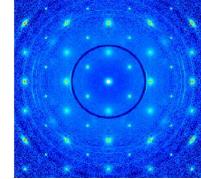

"Quantum spin Liquid"

YbMgGaO₄ (PRR 2021)




Spinel ZnFe₂O₄ Spiral Spin Liquid (PNAS 2022) FeCl₃ (PRL 2022)


Relaxor ferroelectrics R PMN-*x*PT (Nat. Mat. 2018) CAK RIDGE HIGH FLUX SOTOPE National Laboratory HIGH FLUX SPALLATION REACTOR SOURCE


Relaxor ferroelectrics Bi_{0.5}Na_{0.5}TiO₃

Channeled carbonate Ba₃Co₂O₆(CO₃)_{0.7} (J. of Appl. Crys. 2021)

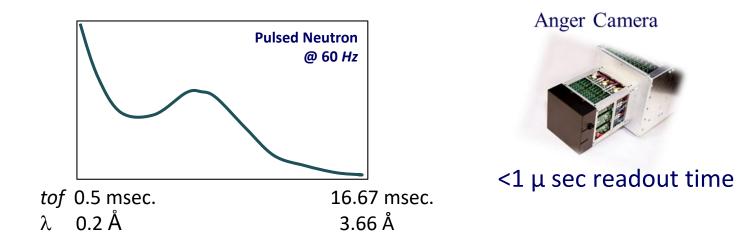
Molecule Benzil $(C_{14}D_{10}O_2)$

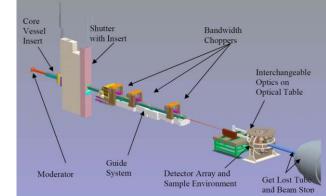
superelasticity

NiCoFeGa

(Nat. Mat. 2020)

b t t NDS MD

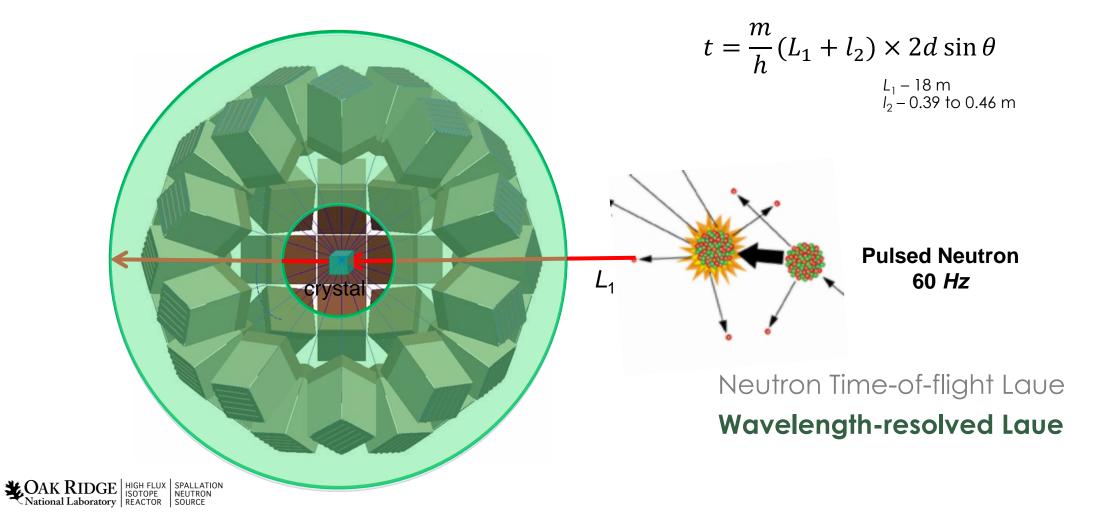

Hybrid lead halide MAPbI₃ (Joule 2023)


Neutron Time of Flight Laue diffraction

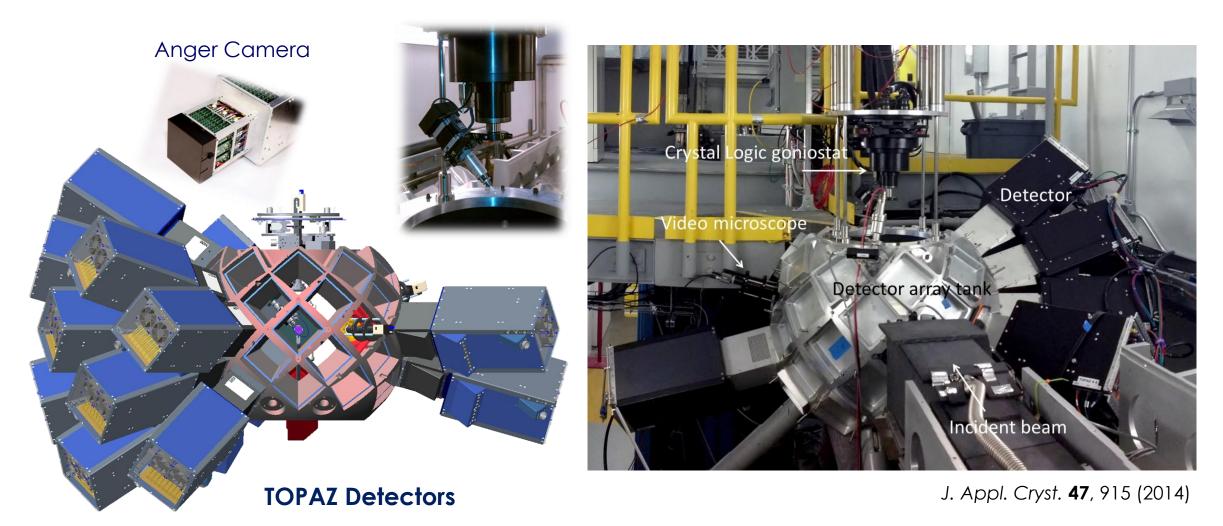
- Neutron Time of Flight: Event-based neutron detection technique
 - de Broglie equation relates neutron wavelength to its momentum:

$$\lambda = \frac{h}{mv} = \frac{h}{m}\frac{t}{L} = \frac{h}{m}\frac{t}{\left(L_{1} + l_{2}\right)}$$

By recording the time of a neutron arrives over a fix path length from source to detector (aka time of flight), its velocity, and consequently its wavelength can be measured.



4


Neutron Wavelength-resolved Laue

Combine de Broglie's equation and Bragg's law

$$l = \frac{h}{mv} = \frac{ht}{m(L_1 + l_2)}$$
 $l = 2d\sin q$

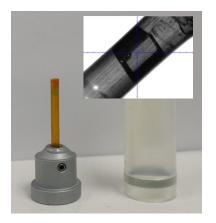
TOPAZ Single Crystal Diffractometer BL-12 SNS

CAK RIDGE HIGH FLUX SPALLATION National Laboratory REACTOR SOURCE

16

https://neutrons.ornl.gov/topaz

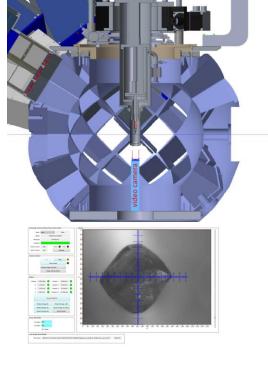
TOPAZ Ambient Goniometer


- A two-axis goniometer
 - Omega, phi with chi fixed at 135°.
 - Both omega and phi are fitted with sliprings that allow unlimited 360° rotational motion.
 - The omega and phi rotation axes are separated by 45 degrees.
 - Sample mount

MiTeGen loop (1 mm ϕ)

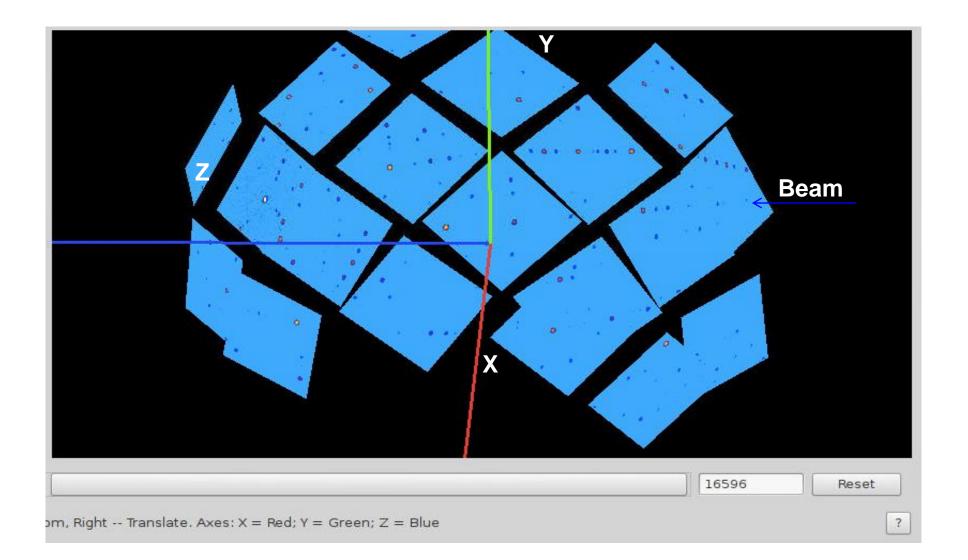
Glued or Coated with perfluorinated grease

Glued onto the tip or inside a Kapton tube


CAK RIDGE National Laboratory REACTOR SOURCE

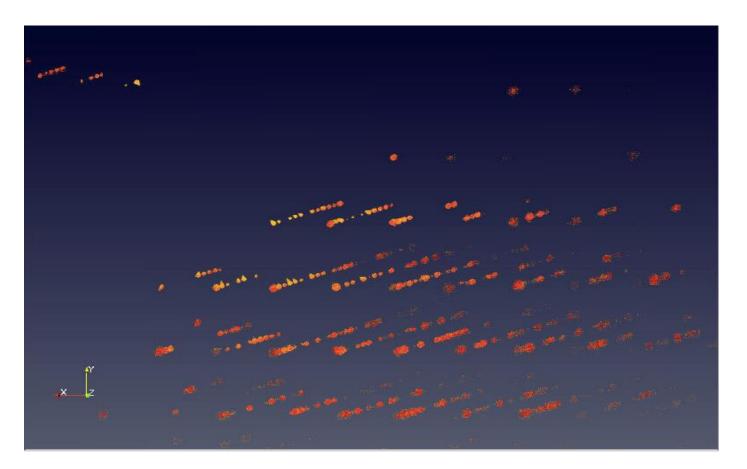
TOPAZ Cryogenic Goniometer

- One axis of rotation (360°) with precision motor controls to center, orient, and hold the sample in the temperature range 5 K – 300 K.
- A video camera is mounted on the base of the DAT



Click-to-center of a single crystal sample

Single crystal peaks on 2D detector space

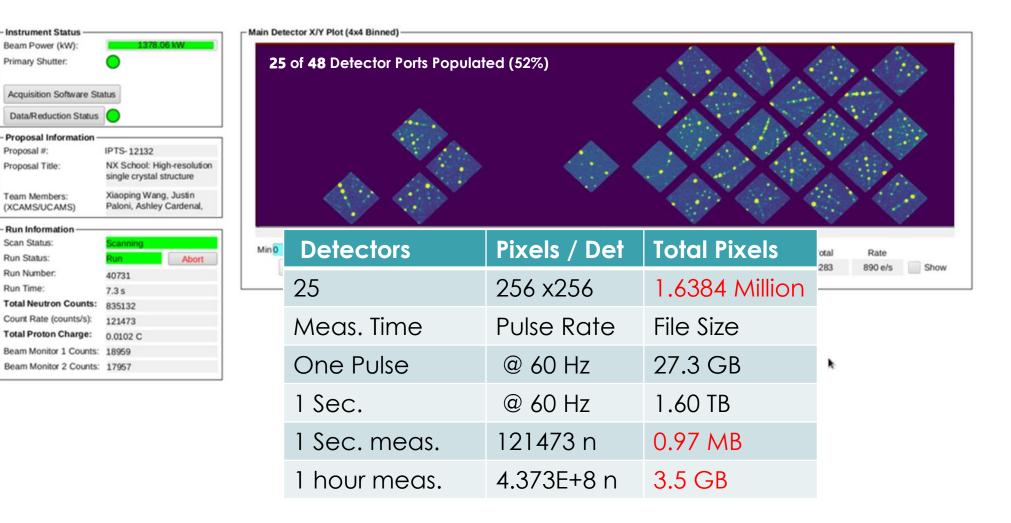


Actional Laboratory REACTOR SOURCE

Single crystal peaks in 3D Q space

Sample continuous reciprocal Q space

Cover a large number of reflections stimulated at a stationary crystal

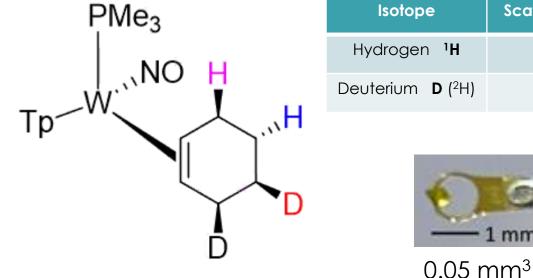

 $\mathbf{k}_{\mathbf{f}} - \mathbf{k}_{\mathbf{i}} = \mathbf{G}$

Laue condition

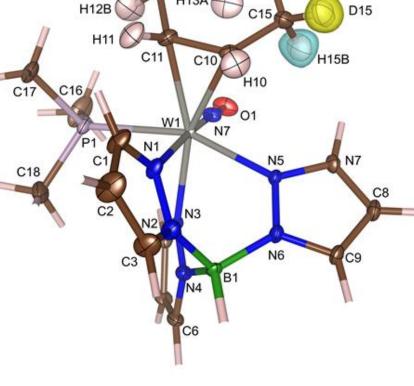
$$\frac{\pi}{4} \frac{(\lambda_{\max} - \lambda_{\min}) d_{\max}^{*4}}{V^*}$$

Number of reflections

TOPAZ Data Collection


21

https://neutrons.ornl.gov/topaz


Site Specific Deuteration of a Cyclohexene Complex

Transition metal-mediated dearomatization.

Opened pathways for a new generation of medicines and therapies that incorporate deuterium into the active pharmaceutical ingredient.

Isotope	Scattering lengths
Hydrogen 1 H	<mark>-3.74</mark> fm
Peuterium D (2 H)	<mark>6.67</mark> fm
• 1	Caracter and

H13B

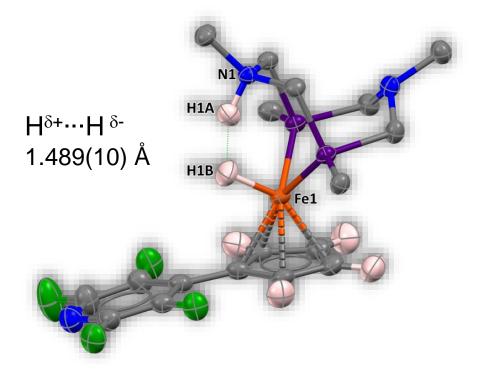
C13

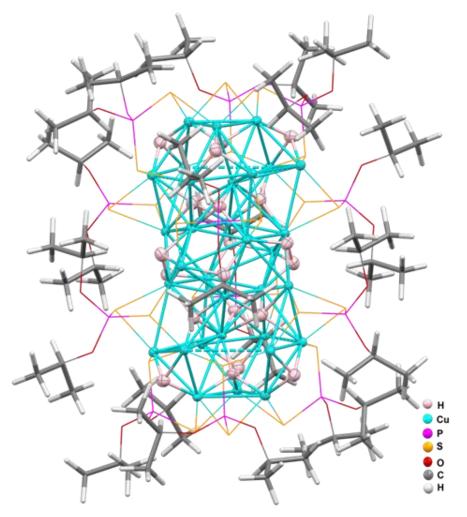
H13A

H12A

Neutron structure of a d_2 isotopologues of cyclohexene complex.

mm




D14

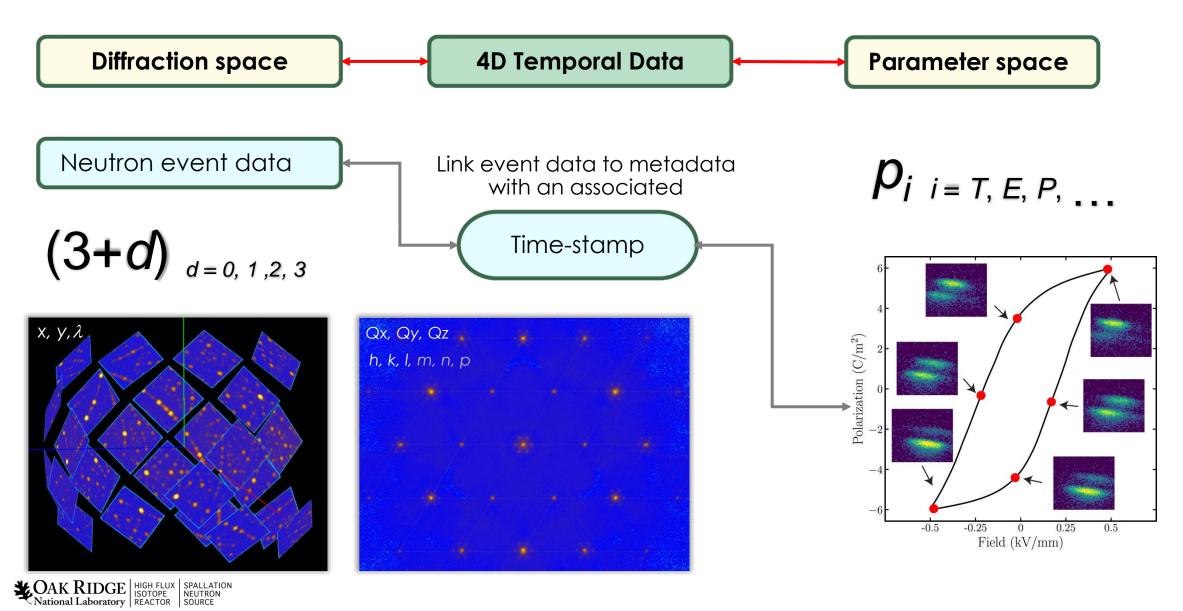
H14A

Chemical crystallography

Locate Hydrogen Atoms in a Crystal Structure

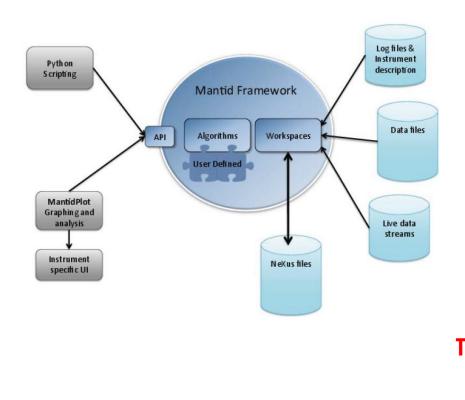
0.32 x 0.90 x 1.95 mm³

T. Liu et. al. Angew. Chem. International Edition, **53**, 21, 5300-5304 (2014)


0.25 x 1.10 x 1.62 mm³

R. S. Dhayal, et. al. Chemistry - A European Journal, 21, 8369 (2015)

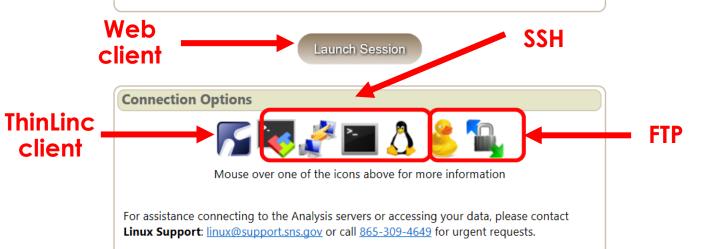
23


Actional Laboratory

Single Crystal Neutron Diffraction beyond three dimensions

Remote Controlled Experiment

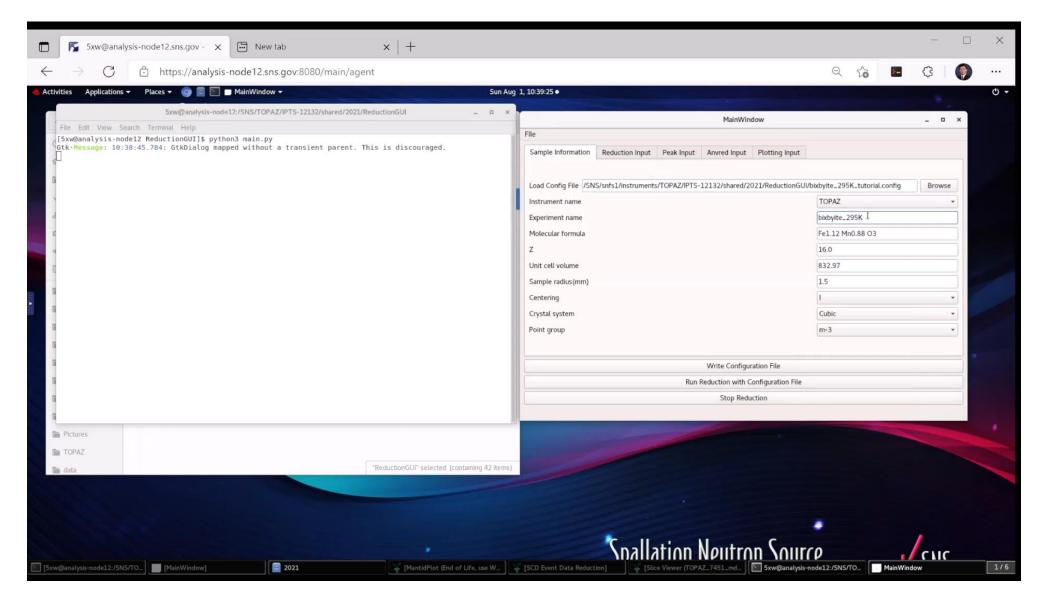
https://analysis.sns.gov



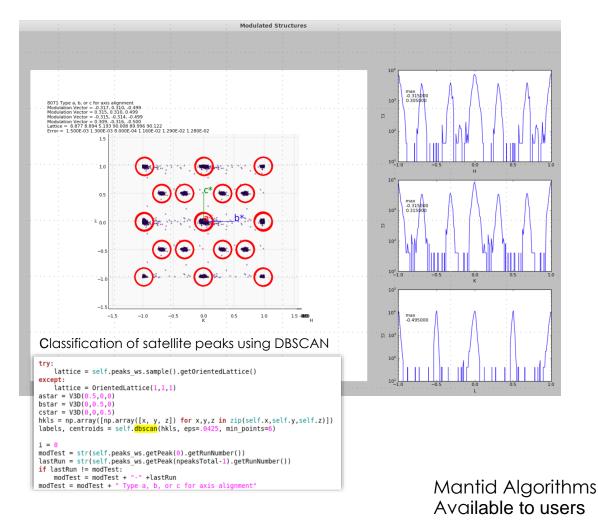
Remote Analysis Service

Remote Desktop Capabilities

As a Neutron Sciences user, you can view, analyze and download your data from anywhere. You will be on a machine just like one you use in our Instrument Hall or Target Building. You can work with your data and use the Data Analysis tools provided. To get started using our webclient click the "Launch Session" button below. For more information about different ways to access your data, please see the "Connection Options" section below.

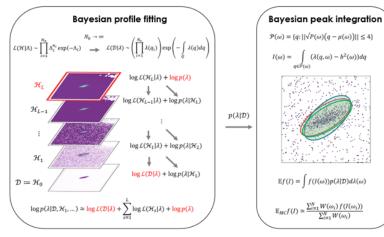

TOPAZ data reduction interface

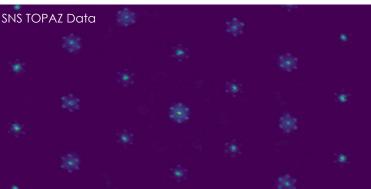
\$ python3 main.py


Terminal output

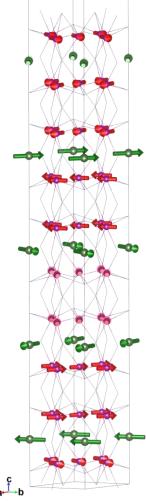
MainWindow	>	5xw@analysis-node12:/SNS/TOPAZ/IPTS-12132/shared/2021/ReductionGUI
Flle		File Edit View Search Terminal Help
Sample Information Reduction Input Peak Input Anvred Input Plotting Input Load Config File /SNS/snfs1/instruments/TOPAZ/IPTS-12132/shared/2021/ReductionGUI/bit Instrument name Experiment name Molecular formula Z Unit cell volume Sample radius(mm) Centering Crystal system Crystal system	xbyite_295K_tutorial.config Browse TOPAZ	Lattice Type: Body centred Point Group symmetry: m-3 (Cubic) Z score: 3.0 StatisticsOfPeaksWorkspace-[Notice] StatisticsOfPeaksWorkspace started StatisticsOfPeaksWorkspace-[Notice] StatisticsOfPeaksWorkspace successful, Duration 0.37 seconds Crystal symmetry Point Group: m-3 Lattice System: Cubic Lattice Centering: Body centred Peak Statistics Number of Peaks: 3286 Multiplicity: 6.13 Data Completeness: 80.48% Resolution Min: 0.5 Resolution Min: 0.5 Resolution Max: 6.83 No. of Unique Reflections: 536 Mean ((I)/sd(I)): 23.94 Rmerge: 4.86%
Point group	m-3 *	Rpim: 2.17%
		Number of peaks after outlier removal: 3286
Write Configuration File		Saving result
Run Reduction with Configuration File		/SNS/snfs1/instruments/TOPAZ/IPTS-12132/shared/bixbyite_295K/bixbyite_295K_Cubic_I.hkl /SNS/snfs1/instruments/TOPAZ/IPTS-12132/shared/bixbyite_295K/bixbyite_295K_Cubic_I_symm.hkl
Stop Reduction		**************************************

TOPAZ data reduction demo


Machine Learning for single crystal neutron diffraction

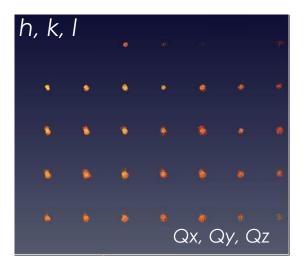


Satellite Peak Index Product of ORNL GO! Student Project


Peak Integration Recent progress

Multiresolution Bayesian optimization with global prior from ML/AI for integrating weak magnetic peaks near strong Bragg reflections

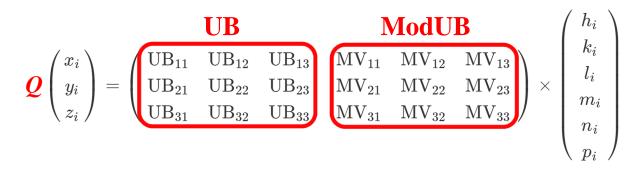
 $\sum_{i=1}^{N} W(\omega_i)$



28

Modulated Structure (mantidproject.org)

TOPAZ Data reduction for modulated crystal





SPALLATION NEUTRON

SOURCE

 $Q = 2\pi (ha^* + kb^* + lc^* + mq_1 + nq_2 + pq_3)$

https://docs.mantidproject.org/nightly/concepts/ModulatedStructure.html

Shiyun Jin U Wisconsin

CAK RIDGE National Laboratory

TOPAZ data reduction GUI for modulated crystal

TOPAZ Data Reduction Tutorial – Modulated Crystal

\$ python3 main.py

					N	1ainWi	ndow		_ ¤ ×
lle									
Sample Information	Redu	uction Inp	ut	Peak	Input		Satellite Peak Input	Anvred Input	Plotting Input
Satellite Indexing Toler	ance 0.0)8							
Mod Vector 1	dhl	0.313	dk1	0.313	dl1	0.5			
Mod Vector 2	dh2	-0.313	dk2	0.313	dl2	0.5			
Mod Vector 3	dh3	0.0	dl3	0.0	dl3	0.0			
Max Order 1	Cross Te	erms 🗐	Save M	od Info	~				
Satellite region radius	0.13		Sate	lite peak s	size	0.07			
Satellite inner size	0.09		Sat	ellite oute	r size	0.	11		
					Write	Confia	uration File		
							Configuration File		
					St	op Red	luction		

Mod UB Matrix with q-vectors

K2V3O8_sat_Niggli.mat	×	K2V3O8_sat_Niggli.integrate						
-0.05116420 -0.05623988 -0.08270616								
0.01924751 0.08581240 -0.07032198								
0.16816849 -0.07894279 -0.05042491								
ModUB:								
0.07392460 -0.03005621 -0.07314879								
0.10583377 0.00555507 -0.02142485								
0.0000000 0.0000000 0.0000000								
8.9013 8.8808 5.1949	90.0226	90.0158	90.0235	410.6562				
0.0001 0.0001 0.0000	0.0008	0.0009	0.0009	0.0076				
Modulation Vector 1: 0.3132	0.3140	0.4989						
Modulation Vector 1 error: 0.0043	0.0046	0.0032						
Modulation Vector 2: -0.3138	0.3169	0.4976						
Modulation Vector 2 error: 0.0043	0.0047	0.0032						
Max Order: 1								
Cross Terms: 0								

SPALLAT National Laboratory

TOPAZ data reduction GUI for modulated crystal

\$ python3 main.py

\rightarrow 6-D Miller Indices h, k, l, m, n, p

MainWindow _ 🗆 🖛 🗙		
Flle		
Sample Information Reduction Input Peak Input Satellite Peak Input Anvred Input Plotting Input	K2V308_sat_Niggli.integrate /SNS/TOPAZ/IPTS-10003/shared/K2V308_sat	Save = _
Satellite Indexing Tolerance 0.08 Mod Vector 1 dh1 0.313 dl1 0.5 Mod Vector 2 dh2 -0.313 dk2 0.313 dl2 0.5 Mod Vector 3 dh3 0.0 dl3 0.0 dl3 0.0 Max Order 1 Cross Terms Save Mod Info ✓ Satellite region radius 0.13 Satellite peak size 0.07 Satellite inner size 0.09 Satellite outer size 0.11	36 256 256 15.8190 15.8190 0.2000 39.94 -23.401 0.0045 -32.3631 0.57141 0.70977 -0.41197 -0.57878 0 37 256 256 15.8190 15.8190 0.2000 39.91 -37.9576 -0.0367 -12.3172 0.22454 0.70837 -0.60896 -0.20011 0 38 256 256 15.8190 15.8190 0.2000 39.91 -37.9710 -0.0419 12.412 -0.22067 0.70788 -0.67988 -0.23133 0 39 256 256 15.8190 15.8190 0.2000 43.09 -41.4160 11.8484 0.0647 0.21227 0.67325 -0.70829 0.1318 0 47 256 256 15.8190 0.2000 43.09 -37.1289 24.4298 12.1112 0.12627 0.67325 -0.78029 0.57218 0 58 256 15.8190 15.8190 0.2000 46.07 -37.1289 24.4298	0.67781 0.69294 0.70442 0.41086 0.70539 0.67999 0.70629 0.66889 0.70629 0.66889 0.70824 0.43462 0.67963 0.70585 0.67848 0.46073 0.60723 0.55994 PK INTI SIGI RFLG 75 39378.00 243.01 310 78 4327.00 65.78 310 64 2407.00 49.06 310 59 4169.00 64.57 310 03 2862.00 53.50 310 70 3776.00 61.45 310 60 901.00 30.08 310 75 2605.00 51.04 310 63 4212.00 64.90 310 86 24981.00 163.72 310 32 74272.00 278.39 310
Write Configuration File	13 3 -6 1 1 0 0 168.00 149.00 9449 45.940 1.86386 -2.61491 2.022093 1.2594 12 14 3 -7 2 0 -1 0 27.00 233.00 7229 46.777 1.64624 -2.59534 1.546206 1.0543 6	97 1455.00 38.14 310 22 3158.00 56.20 310 61 617.00 24.84 310
Run Reduction with Configuration File		
Stop Reduction		

Data format for modulated crystal

Extended SHELX HKFL 2 Laue format with six indices h, k, l, m, n, p

		,					(1)											
h	K	- 1	m	n	р	1	$\sigma(l)$	bn	λ	t-bar	<		directior			>	run	seq
1	-3	-4	0	0	0	7302	178	_	1.89287				-0.17725				8072	4906
1	-3	-3	0	0	0	3498	85	_	2.37125		0.68718	-0.41664	-0.17725	-0.61983	-0.70434	-0.66552	8072	4907
1	-7	-7	1	0	0	16	6	2	1.03874	0.14032	0.68718	-0.53077	-0.17725	-0.60149	-0.70434	-0.59767	8072	4915
1	-6	-8	1	0	0	45	10	2	0.98173	0.14142	0.68718	-0.53707	-0.17725	-0.44885	-0.70434	-0.71467	8072	4916
1	-6	-7	1	0	0	26	6	2	1.10068	0.14136	0.68718	-0.51996	-0.17725	-0.52377	-0.70434	-0.67527	8072	4917
1	-6	-6	1	0	0	22	5	2	1.24005	0.14104	0.68718	-0.50024	-0.17725	-0.61446	-0.70434	-0.61067	8072	4918
1	-5	-5	1	0	0	15	3	2	1.53722	0.14199	0.68718	-0.45615	-0.17725	-0.63150	-0.70434	-0.62757	8072	4921
1	-4	-6	1	0	0	24	3	2	1.40411	0.14320	0.68718	-0.47362	-0.17725	-0.40265	-0.70434	-0.78369	8072	4922
1	-4	-5	1	0	0	9	2	2	1.66864	0.14353	0.68718	-0.43555	-0.17725	-0.51087	-0.70434	-0.74159	8072	4923
1	-7	-8	0	-1	0	36	13	2	0.83093	0.14039	0.68718	-0.56147	-0.17725	-0.50414	-0.70434	-0.65673	8072	4932
1	-7	-7	0	-1	0	42	8	2	0.91129	0.14013	0.68718	-0.54893	-0.17725	-0.57005	-0.70434	-0.61191	8072	4933
1	-5	-5	0	-1	0	22	4	2	1.27571	0.14150	0.68718	-0.49500	-0.17725	-0.58308	-0.70434	-0.64475	8072	4939
1	-3	-4	0	-1	0	17	2	2	1.71003	0.14399	0.68718	-0.42858	-0.17725	-0.45904	-0.70434	-0.77861	8072	4943
1	-3	-3	0	-1	0	8	1	2	2.09457	0.14423	0.68718	-0.37306	-0.17725	-0.60221	-0.70434	-0.70628	8072	4944
2	-8	-8	0	1	0	25	7	2	0.90866	0.14079	0.68718	-0.51303	-0.17725	-0.60434	-0.70434	-0.61015	8072	4953
2	-7	-7	0	1	0	12	6	2	1.05860	0.14144	0.68718	-0.48368	-0.17725	-0.61649	-0.70434	-0.62185	8072	4957
2	-5	-7	0	1	0	10	4	2	1.17683	0.14339	0.68718	-0.45928	-0.17725	-0.43942	-0.70434	-0.77240	8072	4963
2	-5	-6	0	1	0	9	4		1.35646		0.68718	-0.42626	-0.17725	-0.53288	-0.70434	-0.73144	8072	4964
2	-4	-5	0	1	0	9	2	2	1.70479	0.14502	0.68718	-0.35999	-0.17725	-0.52485	-0.70434	-0.77173	8072	4966
2	-7	-8	-1	0	0	30	10	2	0.84506	0.14132	0.68718	-0.52441	-0.17725	-0.51348	-0.70434	-0.67972	8072	4979
2	-6	-7	-1	0	0	21	7	2	0.97402	0.14198	0.68718	-0.49954	-0.17725	-0.51027	-0.70434	-0.70055	8072	4983
2	-6	-6	-1	0	õ	52	7	_	1.08204				-0.17725				8072	4984
2	-6	-5	-1	0	õ	33	5	_	1.21030				-0.17725				8072	4985
2	-5	-6	-1	0	õ	11	5	_	1.14255				-0.17725				8072	4987
2	-5	-5	-1	õ	õ	28	5	_	1.29798		0.68718		-0.17725				8072	4988
2	-4	-5	-1	õ	ŏ	8	3	_		0.14399			-0.17725				8072	4990
2	-		-	· ·	· ·	0	5	2	1.30111	0.14000	0.00710	0.46100	0.11120	0.40100	0.70404	0.10221	5072	1000

TOPAZ Data format: SHELX HKLF 2 Laue

- **<u>HKLF</u> 2** ! + batch number (BN) and wavelength λ for individual reflections
- **Data Format** 314, 2F8.2,14,F8.4
- 1234123412345678123456781234567812345678
- A h k I Fo² σ (Fo²) BN λ

Neutron Time of Flight Lave

- Reflections are measure on a stationary single crystal sample.
- Integrated intensities are corrected for intensity distributions by neutron wavelengths, Lorentz and sample absorption.
- It is possible to refine the scale factors BN for different sets of reflections measured at different sample orientations / or on different detectors

The neutron wavelength for each reflection was recorded separately. No symmetry average is applied to individual reflections due to wavelength- dependent sample extinction

JANA2020 – Neutron structure solution and refinement

JANA2020 Data import

			Complete/o	Complete/correct experim	Complete/correct experimental parameters
Browse	Cell paramete	Cell parameters:	Cell parameters: 8.9013 8.8808 5.1949 90.0226 90.01	Cell parameters: 8.9013 8.8808 5.1949 90.0226 90.0158 90.0235	Cell parameters: 8.9013 8.8808 5.1949 90.0226 90.0158 90.0235
	Number of in 1st modulatic 2nd modulati 3nd modulati Data collectio	Number of input indices: 1st modulation vector:	Number of input indices: 6 Info about metrics 1st modulation vector: 0.3132 0.314 0.4989 2nd modulation vector: -0.3138 0.3169 0.4976 3nd modulation vector: Data collection details:	Number of input indices: 6 1 Info about metrics parameters 1st modulation vector: 0.3132 0.314 0.4989 2nd modulation vector: -0.3138 0.3169 0.4976 3nd modulation vector: Data collection details: -0.3138 0.3169	Number of input indices: 6 Info about metrics parameters 1st modulation vector: 0.3132 0.314 0.4989 2nd modulation vector: -0.3138 0.3169 0.4976 3nd modulation vector: Data collection details:

Software

♠ > Software

Software

Resources

Data reduction

Structure databases

Web applications

Structure refinement

Diffuse scattering analysis

Reduction

Loading data

Converting data to Q-sample

Determining the UB-matrix

Refining the UB-matrix

Integrating peaks

Normalizing data

https://single-crystal.ornl.gov/software/

Welcome to ORNL!

Single Crystal Neutron Diffraction Data Reduction and Analysis

Thank you!

