

ORNL is managed by UT-Battelle, LLC for the US Department of Energy

Safety Related Requirements

<u>-</u>	<u> </u>		
MRA Hydrogen Transfer Line	The MRA hydrogen transfer lines shall be designed and fabricated to	[S.03.04-2348] - MRA Leak Rate	2349
<u>Requirement</u>	ASME B31.12	Requirement	
MRA Hydrogen Vessel	The MRA hydrogen vessels shall be designed to the intent of the	[S.03.04-2348] - MRA Leak Rate	2354
<u>Requirement</u>	ASME BPVC	Requirement	
MRA Vacuum Vessel	The MRA vacuum vessels shall be designed to the intent of the	[S.03.04-2348] - MRA Leak Rate	2893
<u>Requirement</u>	ASME BPVC	Requirement	
MRA Hydrogen Boundary		[S.03.04-2320] - MRA-CMS Interface	2357
<u>Pressure Requirement</u>	The MRA hydrogen boundary MAWP shall be 19 bara.	Requirements	
MRA Vacuum Boundary		[S.03.04-2320] - MRA-CMS Interface	2358
<u>Pressure Requirement</u>	The MRA vacuum boundary MAWP shall be 2 bara.	Requirements	
MRA Vacuum Venting	The MRA vacuum space shall be designed to support venting of	[S.03.04-2320] - MRA-CMS Interface	3591
<u>Requirement</u>	hydrogen leaks without exceeding the MAWP.	Requirements	
MRA Hydrogen Venting	The MRA hydrogen lines shall be designed to support venting of		3592
<u>Requirement</u>	hydrogen after loss of transfer line vacuum without exceeding the	[S.03.04-2320] - MRA-CMS Interface	
	MAWP.	Requirements	
MRA-Target Assembly-Core	Requirements derived from the MRA-Target Assembly-Core Vessel	[S.03-1035] - Safe Operation,[S.03-	2373
<u>Vessel Interface Requirements</u>	Interface Sheet, S01020500-IST10205	1034] - Availability	
MRA Boundary Requirement	The MRA nominal boundary shall match the boundary defined in	[S.03.04-2373] - MRA-Target	2374
	the MRA-Target Assembly-Core Vessel Interface Sheet	Assembly-Core Vessel Requirements	
MRA Profile Tolerance	The MRA shall have an overall profile tolerance of +/- 1mm to the	[S.03.04-2373] - MRA-Target	2995
<u>Requirement</u>	ideal boundary after installation.	Assembly-Core Vessel Requirements	
MRA Deflections	The MRA outside surfaces shall not deflect more than +/- 1mm from	[S.03.04-2373] - MRA-Target	2994
Requirement	their installed locations under any expected loading conditions.	Assembly-Core Vessel Requirements	
MRA Seismic Requirement	The MRA shall be capable of withstanding the loads outlined in		2894
	ASCE 7 within the limits defined by the ASME BPVC, ASME B31.12,		
	and ASME B31.3	[S.03-1035] - Safe Operation	

Conclusions

- The preliminary MRA design meets STS neutron performance requirements as defined through the project KPPs and MRA-Instrument Systems Interface Sheet
- While not an explicit requirement, design for manufacturability has been a priority for MRA design resulting in reduced risk during fabrication and cost savings
- MRA requirements and interfaces are appropriately defined for the conclusion of preliminary design
- The majority of MRA requirements have been verified and those that are unverified are not expected to significantly impact design

Final Design Phase

- Update MRA design based on updated number of beamlines and QIKR location
 - Include results from latest MRA neutronics optimization
- Design changes to achieve unmet requirements
 - Dishing of reflector vessel caps
 - Additional shielding on top of MRA
 - Updated transfer line routing or additional shield block
- Analysis to address unverified requirements
 - Fatigue, piping, venting, seismic, blowdown, & further waste analyses
- Continue to adjust design to surrounding systems changes
- Evaluate neutronic performance effects of further simplification

