
ORNL is managed by UT-Battelle, LLC for the US Department of Energy

Preliminary STS MRA Thermal Hydraulic Analysis

Min-Tsung Kao

Jim Janney

Ken Gawne

Bill Goosie

Lukas Zavorka

03/26/2024



22

Geometry

MRA Assembly MRA Backbone Upper MRA

Lower MRA
= +

MRA Assembly
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Vacuum
Lower moderator (para-H2)
Lower Al for moderator

Vacuum
Upper moderator (para-H2)
Upper Al for moderator

Geometry of MRA

Exterior aluminum vessel walls are 
assumed to be adiabatic (radiation 
heat transfer not included). 

Upper MRA

Lower MRA
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Outline

• CFD analysis for the upper (cylinder) and lower (tube) 
moderators

• CFD analysis for the upper reflector (similar to lower reflector)

• CFD analysis for the MRA backbone  
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Part 1 : CFD analysis for Cylinder (upper) and Tube (Lower) Moderators
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Requirements for the Moderators

• This thermal-hydraulic analyses were performed to demonstrate 
that the current cylinder and tube moderator designs can 
meet the following requirements.

• Requirements

– Pressure drop < 0.05 bar

• Low pressure drop allows flexibility for CMS design

– Maximum hydrogen temperature < 32K

• Hydrogen density starts to change quickly over 32K

– Average hydrogen density > 72.9 kg/m3

• This density was assumed by neutronic calculations, but neutronics team thinks 
small deviations from this value will not cause significant loss of performance

– Residence time > 0.2s, No regions of much longer residence time

• Residence time >0.2s indicates the hydrogen will be in the moderator for greater 
than 3 beam pulses at 15 Hz which helps validate the steady state assumption
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Cylinder Moderator Tube Moderator

Cylinder and Tube Moderators

ParaH2

Inlet (0.0369 kg/s, 19 K H2)

Outlet (1.45MPa = 14.5 bar)

Al

Outlet (1.45MPa = 14.5 bar)

0.5 l/s

ParaH2Al

0.5 l/s

Inlet (0.0369 kg/s, 19 K H2)
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Steady State Heat Transfer Analysis for Cylinder Moderator, Mesh Configuration

H2

Al

Cylinder Moderator

Al

Mesh Type Polyhedral mesh

Base Size (m) 0.001

Target Surface Size (m) 3.60E-04

Minimum Surface Size (m) 1.00E-04

Number of Prism Layers 3

Prism Layer Stretching 2

Prism Layer Total Thickness (m) 2.00E-04

Number of Cells 3.31E+06

H2

Mesh Type Polyhedral mesh

Base Size (m) 0.001

Target Surface Size (m) 5.00E-04

Minimum Surface Size (m) 1.00E-04

Number of Prism Layers 7

Prism Layer Stretching 1.5

Prism Layer Total Thickness (m) 2.00E-04

Number of Cells 1.74E+06

Total Cells (Al+H2) 5.04E+06
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Steady State Heat Transfer Analysis for Tube Moderator, Mesh Configuration

Al

H2

Tube Moderator

Al

Mesh Type Polyhedral mesh

Base Size (m) 0.0025

Target Surface Size (m) 9.00E-04

Minimum Surface Size (m) 2.50E-04

Number of Prism Layers 4

Prism Layer Stretching 1.5

Prism Layer Total Thickness (m) 2.50E-04

Number of Cells 9.87E+05

H2

Mesh Type Polyhedral mesh

Base Size (m) 0.0025

Target Surface Size (m) 9.00E-04

Minimum Surface Size (m) 2.50E-04

Number of Prism Layers 8

Prism Layer Stretching 1.5

Prism Layer Total Thickness (m) 3.50E-04

Number of Cells 9.12E+05

Total Cells (Al+H2) 1.90E+06
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Thermal Properties

Thermal properties of Para-H2 can be found on https://webbook.nist.gov/chemistry/fluid/

Thermal properties of Al6061-T6 can be found on https://trc.nist.gov/cryogenics/materials/6061%20Aluminum/6061_T6Aluminum_rev.htm

Material Thermal Conductivity, k (W/m-K) Density, ρ (kg/m3) Specific Heat, Cp (J/kg-K)

Al (T = 20K) 28.43 2800 8.85

Para-H2 Table(T) Polynomial in T Table(T)

𝑘𝐴𝑙 𝑇 = 10𝑎+𝑏 𝑙𝑜𝑔10 𝑇 + 𝑐 𝑙𝑜𝑔10 𝑇 2 + 𝑑 𝑙𝑜𝑔10 𝑇 3 + 𝑒 𝑙𝑜𝑔10 𝑇 4 + 𝑓 𝑙𝑜𝑔10 𝑇 5 + 𝑔 𝑙𝑜𝑔10 𝑇 6 + ℎ 𝑙𝑜𝑔10 𝑇 7 + 𝑖 𝑙𝑜𝑔10 𝑇 8

𝐶𝑝𝐴𝑙 𝑇 = 10𝑎+𝑏 𝑙𝑜𝑔10 𝑇 + 𝑐 𝑙𝑜𝑔10 𝑇 2 + 𝑑 𝑙𝑜𝑔10 𝑇 3 + 𝑒 𝑙𝑜𝑔10 𝑇 4 + 𝑓 𝑙𝑜𝑔10 𝑇 5 + 𝑔 𝑙𝑜𝑔10 𝑇 6 + ℎ 𝑙𝑜𝑔10 𝑇 7 + 𝑖 𝑙𝑜𝑔10 𝑇 8

ρ𝐻2
𝑇 = 𝑎 + 𝑏𝑇 + 𝑐𝑇2 + 𝑑𝑇3

Coefficient ρ𝐻2
 (kg/m3) 𝑘𝐴𝑙 (W/m-K) 𝐶𝑝𝐴𝑙  (J/kg-K)

a 138.907 0.07918 46.6467

b -8.23187 1.0957 -314.292

c 0.370104 -0.07277 866.662

d -0.00621765 0.08084 -1298.3

e 0.02803 1162.27

f -0.09464 -637.795

g 0.04179 210.351

h -0.00571 -38.3094

i 0 2.96344

Thermal properties of Al6061-T6 can be found on 

https://trc.nist.gov/cryogenics/materials/6061%20
Aluminum/6061_T6Aluminum_rev.htm
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Thermal Properties of Para-H2 @1.45 MPa (14.5 bar) 
https://webbook.nist.gov/cgi/fluid.cgi?Action=Load&ID=B5000001&Type=IsoBar&Digits=5&P=1.45&THigh=40&TLow=15&TInc=1&RefState=DEF&TUnit=K&PUnit=MPa&DUnit=kg%2Fm3&HUnit=kJ%2Fkg&WUnit=m%2Fs&VisUnit=Pa*s&STUnit=N%2Fm

NIST Density Specific Heat Thermal Conductivity
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Thermal Properties of Para-H2 @1.45 MPa (14.5 bar) 
https://webbook.nist.gov/cgi/fluid.cgi?Action=Load&ID=B5000001&Type=IsoBar&Digits=5&P=1.45&THigh=40&TLow=15&TInc=1&RefState=DEF&TUnit=K&PUnit=MPa&DUnit=kg%2Fm3&HUnit=kJ%2Fkg&WUnit=m%2Fs&VisUnit=Pa*s&STUnit=N%2Fm

Inlet mass flow rate

MRA H2 
19 K- 24.1 K
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Results of Upper (Cylinder) H2 Moderator 
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Steady State Heat Transfer Analysis for Cylinder Moderator, Heat Source

Uniform heating for H2

Heating peaks on the rear side of Al 
(+x, downstream of proton beam).

Q of Al

Q of H2

From slow and thermal neutrons generated 
in the rear portion of W target.

Q_Al = 228 W

Q_H2 = 162 W
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Steady State Heat Transfer Analysis for Cylinder Moderator, Pressure

Δ𝑃𝑖𝑛𝑙𝑒𝑡−𝑜𝑢𝑡𝑙𝑒𝑡  = 0.023 bar (= 2.3 kPa = 0.33 𝑝𝑠𝑖 = 0.023 𝑎𝑡𝑚)

Outlet

Inlet (0.0369 kg/s, 19 K H2)

Requirement: < 0.05 bar 
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Steady State Heat Transfer Analysis for Cylinder Moderator, Density of H2

Cylinder (upper) Moderator

H2 Density at 19 K (kg/m^3) 73.806

Average H2 Density (kg/m^3) 72.569

Variation (%) 1.68

Requirement: > 72.9 kg/m3
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Steady State Heat Transfer Analysis for Cylinder Moderator, Temperature of H2

Tin= 19 K

Tout= 20.199 K

Requirement: < 32K



1818

Steady State Heat Transfer Analysis for Cylinder Moderator, Temperature of Al
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Steady State Heat Transfer Analysis for Cylinder Moderator, Streamlines
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Steady State Heat Transfer Analysis for Cylinder Moderator

Q of Al

Velocity of H2

Temperature of AlHeating is higher in 
+x direction (along 
the proton beam, 
rear of the target)

Higher velocity

Lower velocity

Peak Al temperature occurs at 
the top surface in +x direction.
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Results of Lower (Tube) H2 Moderator 
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Steady State Heat Transfer Analysis for Tube Moderator, Heat Source

Heating peaks on the rear side of Al 
(+x, downstream of proton beam).

Q of Al

Q of H2

Heating peaks on the rear side of Al 
(+x, downstream of proton beam).

Q_Al = 186 W

Q_H2 = 207 W
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Steady State Heat Transfer Analysis for Tube Moderator, Pressure

Δ𝑃𝑖𝑛𝑙𝑒𝑡−𝑜𝑢𝑡𝑙𝑒𝑡  = 0.0106 bar (= 1.06 kPa = 0.15 𝑝𝑠𝑖 = 0.0105 𝑎𝑡𝑚)

Inlet (0.0369 kg/s, 19 K H2)Outlet

High pressure due to stagnation point

Low pressure due to 
flow acceleration

Requirement: < 0.05 bar 
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Steady State Heat Transfer Analysis for Tube Moderator, Density of H2

Tube (lower) Moderator

H2 Density at 19 K (kg/m^3) 73.806

Average H2 Density (kg/m^3) 72.832

Variation (%) 1.32

Requirement: > 72.9 kg/m3
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Steady State Heat Transfer Analysis for Tube Moderator, Temperature of H2

Tin= 19 KTout= 20.2097 K

Requirement: < 32K
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Steady State Heat Transfer Analysis for Tube Moderator, Temperature of Al

Peak heating location is not where 
the peak temperature occurs. 
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Steady State Heat Transfer Analysis for Tube Moderator, Streamlines
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Steady State Heat Transfer Analysis for Tube Moderator, Temperature & Velocity

Temperature Velocity of H2

Al H2

The H2 mainstream is away from the Al wall and 
thus Al temperature is higher along this tube.
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Steady State Heat Transfer Analysis, Residence Time

Cylinder Moderator Tube Moderator
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Comparison between Requirements and CFD Results

Requirement
CFD Result

Cylinder Moderator Tube Moderator

Pressure drop (bar) < 0.05 0.023 0.0106

Maximum hydrogen temperature (K) < 32 22.9 24.1

Average hydrogen density (kg/m3) > 72.9 72.569 72.832

Residence time (s) > 0.2 0.64 0.93

• Except for average hydrogen density, all requirements are met 
with at least a factor of 2 margin

– High confidence that margins are greater than uncertainties
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• Most requirements are met except for the average hydrogen 
density (72.9 kg/m3).

– All other requirements are met with at least a factor of 2 margin

• Neutronics will evaluate sensitivity to hydrogen density and 
will update hydrogen density requirement

• Final moderator analysis will include additional details

– Moderator inlet temperatures updated based on single loop in series 
CMS design

– Inclusion of moderator weld backer geometry

– Inclusion of cylinder moderator transition to concentric flow geometry

Summary
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Part 2 : CFD analysis for the upper reflector (similar to lower reflector)
Q = 15 kW Q = 16 kW

2% of 700 kW 2% of 700 kW
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Requirements for MRA Reflectors

• This thermal-hydraulic analyses were performed to demonstrate 
that the current MRA design (without moderators, which were 
done in separate analyses and the results were also 
documented in a separate presentation) can meet the 
following requirements.

• Requirements

– Pressure drop < 15 psi

• Low pressure drop allows flexibility for CMS design

– Maximum water temperature < 100°C

• No water boiling

– Maximum Aluminum temperature < 100°C

– Maximum Beryllium temperature < 100°C
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Vacuum
Upper moderator (para-H2)
Upper Al for moderator

Geometry of Upper MRA

Upper MRA

Lower MRA Analyzed domain

Upper Al for PreModerator, Reflector and Be

Upper PreModerator (H2O)

Upper Be

Upper Reflector (H2O)

Exterior aluminum wall is 
assumed to be adiabatic. 

Interior aluminum wall is assumed to be 
adiabatic (vacuum environment). 
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Steady State Heat Transfer Analysis for Upper MRA, Geometry

Upper PreModerator (H2O) Upper Reflector (H2O)

CAD model from Ken Gawne
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Steady State Heat Transfer Analysis for Upper MRA, Geometry
Upper PreModerator (H2O) Upper Reflector (H2O)

Upper Al

Reflector inlet (0.47 kg/s, 35°C H2O)

Reflector outlet (1 atm)

PreModerator inlet (0.47 kg/s, 35°C H2O)

PreModerator outlet (1 atm)

Upper Be
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Steady State Heat Transfer Analysis for Upper MRA, Mesh Configuration

Pre-moderatorReflector AlBe Pre-moderatorReflector AlBe
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Upper MRA (Without Moderators)

Al Be PreModerator (H2O) Reflector (H2O)

Mesh Type Polyhedral mesh Polyhedral mesh Polyhedral mesh Polyhedral mesh

Base Size (m) 1.00E-02 1.00E-02 4.00E-03 2.00E-03

Target Surface Size (m) 5.00E-03 5.00E-03 2.00E-03 1.00E-03

Minimum Surface Size (m) 1.00E-03 1.00E-03 4.00E-04 2.00E-04

Number of Prism Layers 0 0 8 8

Prism Layer Stretching 0 0 1.5 1.5

Prism Layer Total Thickness (m) 0 0 1.33E-03 7.00E-04

Number of Cells 2.42E+05 1.77E+05 1.13E+06 5.18E+06

Total Cells 6.74E+06

Steady State Heat Transfer Analysis for Upper MRA, Mesh Settings
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Thermal Properties

Material Thermal Conductivity, k (W/m-K) Density, ρ (kg/m3) Specific Heat, Cp (J/kg-K) Viscosity (Pa-s)

Al 167 2800 880 N/A

Be 168 1850 1925 N/A

H2O (PreModerator & Reflector) 0.617 995 4173 7.98E-04
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Steady State Heat Transfer Analysis for Upper MRA, Heat Source

Q_Al = 4.99 kW Q_Be = 6.42 kW 
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Steady State Heat Transfer Analysis for Upper MRA, Heat Source

Q_PreModerator = 2.98 kW Q_Reflector = 0.39 kW
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Steady State Heat Transfer Analysis for Upper PreModerator, Pressure

Δ𝑃𝑖𝑛𝑙𝑒𝑡−𝑜𝑢𝑡𝑙𝑒𝑡  = 0.17 bar (= 17.4 kPa = 2.53 𝑝𝑠𝑖 = 0.17 𝑎𝑡𝑚)

outlet (1 atm)

inlet (0.47 kg/s, 35°C H2O)

Requirement: < 15 psi
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Steady State Heat Transfer Analysis for Upper Reflector, Pressure

Δ𝑃𝑖𝑛𝑙𝑒𝑡−𝑜𝑢𝑡𝑙𝑒𝑡  = 0.56 bar (= 56.5 kPa = 8.2 𝑝𝑠𝑖 = 0.56 𝑎𝑡𝑚)

outlet (1 atm)

inlet (0.47 kg/s, 35°C H2O)

Requirement: < 15 psi
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Steady State Heat Transfer Analysis for Upper PreModerator (H2O), Temperature

inlet (0.47 kg/s, 35°C H2O) Tout= 38.30°C

Peak Temperature of Upper PreModerator: 55.3°C

Requirement: < 100°C
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Steady State Heat Transfer Analysis for Upper Reflector(H2O), Temperature

inlet (0.47 kg/s, 35°C H2O) Tout= 39.04°C

Peak Temperature of Upper Reflector: 50.4°C

Requirement: < 100°C
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Steady State Heat Transfer Analysis for Upper Be, Temperature

Peak Temperature of Upper Be: 59.3°C

Requirement: < 100°C
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Steady State Heat Transfer Analysis for Upper Al, Temperature

Peak Temperature of Upper Al: 60.1°C

Requirement: < 100°C
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Steady State Heat Transfer Analysis for Tube Moderator, Streamlines
Animation

Upper PreModerator

Upper Reflector
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Be

Al
Q_Be

Lower MRA

Upper MRA

higher temperature

Steady State Heat Transfer Analysis for Upper MRA, Velocity & Temperature

Q_Al
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Comparison between Requirements and CFD Results

Requirement CFD Result

Maximum Aluminum Temperature (°C) < 100 60.1

Maximum Beryllium Temperature (°C) < 100 59.3

PreModerator Reflector

Pressure Drop (psi) < 15 2.53 8.2

Maximum Water Temperature (°C) < 100 55.3 50.4

Upper MRA (without Moderator)

• All requirements are met with at least a factor of 1.83 margin

– High confidence that margin to requirements is significantly higher 
than uncertainties
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• The locations of the inlet and outlet for the reflector were 
adjusted several times to reduce the pressure drop from 22 psi 
to 8 psi.  The main idea is to reduce the vortex near the outlet 
since the pressure within the vortex region is very low and thus 
the pressure would be increased.

• All requirements are met with high margins

• Items to be included in final analysis

– Update inlet/outlet geometry based on final backbone design

• Preliminary backbone inlet/outlets are moved slightly from locations used in 
this analysis

– Update inlet temperature to match final process systems 
inlet temperature – current estimate is 32.3 C

– Include weld backer geometry for the reflector vessel welds

Summary
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Part 3 : CFD analysis for the MRA backbone  
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Requirements for MRA Backbone

• This thermal-hydraulic analyses were performed to demonstrate 
that the current MRA backbone design can meet the following 
requirements.

• Requirements

– Maximum water temperature < 100°C

• No water boiling

– Maximum stainless-steel temperature < 200°C

– Pressure drop < 0.5 psi 

• For the cooling loops 1 & 2

– Pressure drop < 4.0 psi

• For the cooling loops 3 & 4

• Goal : minimize stainless steel temperatures in order to minimize 
thermal displacements
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Geometry

Proton beam

MRA Backbone

Upper MRA

Lower MRA



5555

0.47 kg/s (7.5 GPM) , 35.0°C (Loop_1: Lower Reflector Inlet )

0.47 kg/s (7.5 GPM) , 35.0°C (Loop_2: Lower Premoderator Inlet)

0.94 kg/s (15 GPM) , 39.2°C (Loop_3_1: Lower Reflector/Premoderator Combined Outlet)

0.94 kg/s (15 GPM) , 35.0°C (Loop_3_2: Middle Backbone Inlet)

0.94 kg/s (15 GPM) , 38.7°C (Loop_4: Upper Reflector/Premoderator Combined Outlet)

MRA Full Backbone Geometry

Loop_3

Loop_4

Water

Loop_3_1 & 
Loop_4: outlet 
temperatures 
from reflector 
vessel analyses
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MRA Full Backbone Geometry, Pipe Cut Outs
Higher temperature is expected around the Pipe cut outs (difficult to route cooling passages)

Cut out_1

Cut out_2

Cut out_1
Cut out_2

Pipe Cut Outs: 

slots with clearance for routing piping to the component



5757

MRA Full Backbone Geometry, Vacuum Regions 
Higher temperature is expected around the vacuum regions (difficult to route cooling passages)

Vacuum 2

Higher T expected

Neutron beam ports

Vacuum 1
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MRA Full Backbone Heat Source

energy deposition from Lukas

𝑄𝑆𝑆 = 26,054 𝑊

3.7% of 700 kW
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Lower Block

Middle Block

Upper Block

Shielding Block

MRA Full Backbone Heat Source (Solid)

Part Heat (W)

Shielding Block 2.157842e+03

Upper Block 6.494906e+03

Middle Block 1.199489e+04

Lower Block 5.405235e+03

Jumper Elbow 7.509197e-01
Jumper Elbow

Perfect Contact

Perfect Contact

Perfect Contact
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Heat Source in Water
𝑄𝑤𝑎𝑡𝑒𝑟 = 𝑄𝑆𝑆 ∗

ρ𝑤𝑎𝑡𝑒𝑟

ρ𝑆𝑆
 = 𝑄𝑆𝑆 ∗

997.561

7969
Q_Water approximation:

𝑄𝑤𝑎𝑡𝑒𝑟 = 229.57W
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Density (kg/m3) 7969

Coefficient of Thermal Expansion (1/K) 1.61E-05

Specific Heat (J/kg-K) 486.1

Thermal Conductivity (W/m-K) 14.58

Young's Modulus (Pa) 1.95E+11

Poisson's Ratio 0.27

Bulk Modulus (MPa) 1.413E5

Shear Modulus (MPa) 76772

Tensile Ultimate Strength (MPa) 565.1

Tensile Yield Strength (MPa) 252.1

SS316 Material Properties From Ansys

Stainless steel, 316, annealed

Data compiled by Ansys Granta, incorporating various 
sources including JAHM and MagWeb. 

SS316 Material Properties from Ansys
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MRA Full Backbone, Water Pressure

Δ𝑃𝑖𝑛𝑙𝑒𝑡−𝑜𝑢𝑡𝑙𝑒𝑡  = 0.255 𝑝𝑠𝑖 (𝐿𝑜𝑜𝑝_1 , 7.5𝐺𝑃𝑀)

Loop_1
Loop_2

Outlet, 35.28°C
Inlet, 0.47kg/s, 35°C

Inlet, 0.47kg/s, 35°C
Outlet, 35.11°C

Δ𝑃𝑖𝑛𝑙𝑒𝑡−𝑜𝑢𝑡𝑙𝑒𝑡  = 0.404 𝑝𝑠𝑖 (𝐿𝑜𝑜𝑝_2 , 7.5𝐺𝑃𝑀)
Loops_1-4

Requirement for 7.5 GPM circuit : < 0.5 psi
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MRA Full Backbone, Water Pressure

Δ𝑃𝑖𝑛𝑙𝑒𝑡−𝑜𝑢𝑡𝑙𝑒𝑡 = 1.64 𝑝𝑠𝑖 (Loop_3_1, 15 GPM)

Inlet, 0.94kg/s, 38.7°C

Outlet, 40.90°C

Inlet_1, 0.94kg/s, 35°C

Inlet_2, 0.94kg/s, 39.2°C

Outlet, 39.25°C

Δ𝑃𝑖𝑛𝑙𝑒𝑡−𝑜𝑢𝑡𝑙𝑒𝑡 = 1.12 𝑝𝑠𝑖 (Loop_3_2, 15 GPM)
Loop_3 Loop_4

Δ𝑃𝑖𝑛𝑙𝑒𝑡−𝑜𝑢𝑡𝑙𝑒𝑡  = 3.17 𝑝𝑠𝑖 (Loop_4, 15 GPM)

Requirement for 15 GPM circuit : < 4 psi
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MRA Full Backbone, Water Temperature

Peak : 61.2°C

Requirement: < 100°C
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MRA Full Backbone, Water Streamlines

Streamline Animation
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MRA Full Backbone, SS Temperature
Requirement: < 200°C

Peak : 117.3°C
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Thermal Contact Resistance of MRA Backbone

Lower Block

Middle Block

Upper Block

Shielding Block

Contact resistance

Contact resistance

Contact resistance

Contact Gap Size, L (mm) Helium, k (W/m-K) R (m^2 -K/W)

Lower/Middle Blocks 0.1 0.154933 6.4544E-04

Middel/Upper Blocks 0.1 0.154933 6.4544E-04

Upper/Shielding Blocks 0.1 0.154933 6.4544E-04

Contact Gap Size, L (mm) Helium, k (W/m-K) R (m^2 -K/W)

Lower/Middle Blocks 1.0 0.154933 6.4544E-03

Middel/Upper Blocks 1.0 0.154933 6.4544E-03

Upper/Shielding Blocks 1.0 0.154933 6.4544E-03

R = L/k



6868

Perfect Contact 0.1 mm Helium Gap 1 mm Helium Gap

MRA Full Backbone, SS Temperature Comparison
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Comparison between Requirements and CFD Results

MRA Backbone

Requirement CFD Result

Maximum Water Temperature (°C) < 100 61.2

Maximum Stainless-steel Temperature (°C) < 200 117.3

Pressure Drop (psi) for Loop 1 < 0.5 0.255

Pressure Drop (psi) for Loop 2 < 0.5 0.404

Pressure Drop (psi) for Loop 3_1 < 4.0 1.64

Pressure Drop (psi) for Loop 3_2 < 4.0 1.12

Pressure Drop (psi) for Loop 4 < 4.0 3.17
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• All requirements are met.

– Water does not boil.

– Stainless-steel temperature is less than 200°C

– Pressure drops for loops 1 & 2 are less than 0.5 psi

– Pressure drops for loops 3 & 4 are less than 4.0 psi. 

Summary
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