

Preliminary STS MRA Thermal Hydraulic Analysis

Min-Tsung Kao Jim Janney Ken Gawne Bill Goosie Lukas Zavorka

03/26/2024

ORNL is managed by UT-Battelle, LLC for the US Department of Energy

Geometry

Outline

 CFD analysis for the upper (cylinder) and lower (tube) moderators

- CFD analysis for the upper reflector (similar to lower reflector)
- CFD analysis for the MRA backbone

Part 1 : CFD analysis for Cylinder (upper) and Tube (Lower) Moderators

Requirements for the Moderators

• This thermal-hydraulic analyses were performed to demonstrate that the current cylinder and tube moderator designs can meet the following requirements.

Requirements

- Pressure drop < 0.05 bar
 - Low pressure drop allows flexibility for CMS design
- Maximum hydrogen temperature < 32K
 - Hydrogen density starts to change quickly over 32K
- Average hydrogen density > 72.9 kg/m³
 - This density was assumed by neutronic calculations, but neutronics team thinks small deviations from this value will not cause significant loss of performance
- Residence time > 0.2s, No regions of much longer residence time
 - Residence time >0.2s indicates the hydrogen will be in the moderator for greater than 3 beam pulses at 15 Hz which helps validate the steady state assumption

Cylinder and Tube Moderators

CAK RIDGE

Steady State Heat Transfer Analysis for Cylinder Moderator, Mesh Configuration

Cylinder Modero	ator
AI	
Mesh Type	Polyhedral mesh
Base Size (m)	0.00
Target Surface Size (m)	3.60E-04
Minimum Surface Size (m)	1.00E-04
Number of Prism Layers	:
Prism Layer Stretching	
Prism Layer Total Thickness (m)	2.00E-04
Number of Cells	3.31E+0
H2	
Mesh Type	Polyhedral mesh
Base Size (m)	0.00
Target Surface Size (m)	5.00E-04
Minimum Surface Size (m)	1.00E-04
Number of Prism Layers	
Prism Layer Stretching	1.5
Prism Layer Total Thickness (m)	2.00E-04
Number of Cells	1.74E+0
Total Cells (Al+H2)	5.04E+0

v

Ζ

Х

Steady State Heat Transfer Analysis for Tube Moderator, Mesh Configuration

Thermal Properties

Material	Thermal Conductivity, k (W/m-K)	Density, ρ (kg/m ³)	Specific Heat, Cp (J/kg-K)
AI (T = 20K)	28.43	2800	8.85
Para-H2	Table(T)	Polynomial in T	Table(T)

Thermal properties of Para-H2 can be found on https://webbook.nist.gov/chemistry/fluid/

Thermal properties of Al6061-T6 can be found on https://trc.nist.gov/cryogenics/materials/6061%20Aluminum/6061_T6Aluminum_rev.htm $\rho_{H_2}(T) = a + bT + cT^2 + dT^3$

 $k_{Al}(T) = 10^{a+b(\log_{10} T)} + c(\log_{10} T)^2 + d(\log_{10} T)^3 + e(\log_{10} T)^4 + f(\log_{10} T)^5 + g(\log_{10} T)^6 + h(\log_{10} T)^7 + i(\log_{10} T)^8$

 $Cp_{Al}(T) = 10^{a+b(\log_{10} T)} + c(\log_{10} T)^2 + d(\log_{10} T)^3 + e(\log_{10} T)^4 + f(\log_{10} T)^5 + g(\log_{10} T)^6 + h(\log_{10} T)^7 + i(\log_{10} T)^8$

Coefficient	$ ho_{H_2}$ (kg/m3)	k _{Al} (W/m-К)	Cp _{Al} (J/kg-K)
a	138.907	0.07918	46.6467
b	-8.23187	1.0957	-314.292
С	0.370104	-0.07277	866.662
d	-0.00621765	0.08084	-1298.3
е		0.02803	1162.27
f		-0.09464	-637.795
g		0.04179	210.351
h		-0.00571	-38.3094
i		0	2.96344

Thermal properties of Al6061-T6 can be found on https://trc.nist.gov/cryogenics/materials/6061%20 Aluminum/6061_T6Aluminum_rev.htm

Thermal Properties of Para-H2@1.45 MPa (14.5 bar)

https://webbook.nist.gov/cgi/fluid.cgi?Action=Load&ID=B5000001&Type=IsoBar&Digits=5&P=1.45&THigh=40&TLow=15&TInc=1&RefState=DEF&TUnit=K&PUnit=MPa&DUnit=kg%2Fm3&HUnit=kJ%2Fkg&WUnit=m%2Fs&VisUnit=Pa*s&STUnit=N%2Fm

list		Density					Spe	cific	Heat		Therr	nal Condu	ctivity
Temperature (K)	Pressure (MPa)	Density (kg/m3)	Volume (m3/kg)	Internal Energy (kJ/kg)	Enthalpy (kJ/kg)	Entropy (J/g*K)	Cv (J/g*K)	Cp (J/g*K)	Sound Spd. (m/s)	Joule-Thomson (K/MPa)	Viscosity (Pa*s)	Therm. Cond. (W/m*K)	Phase
15.000	1.450	77.241	0.012946	-48.154	-29.382	-2.6918	5.277	7.0899	1277.6	-1.5529	2.4601e-05	0.092173	liquid
16.000	1.450	76.451	0.013080	-41.113	-22.146	-2.2249	5.3273	7.3893	1261.2	-1.4699	2.2056e-05	0.095267	liquid
17.000	1.450(75.618	0.013224	-33.762	-14.587	-1.7667	5.3864	7.7374	1244.7	-1.3801	1.9938e-05	0.097931	liquid
18.000	1.450	74.738	0.013380	-26.058	-6.6569	-1.3136	5.458	8.1293	1226.8	-1.2869	1.8140e-05	0.10016	liquid
19.000	1.450	73.806	0.013549	-17.961	1.6851	-0.86267	5.541	8.5610	1206.8	-1.1922	1.6595e-05	0.10197	liquid
20.000	1.450	72.820	0.013733	-9.4346	10.478	-0.41178	5.631:	9.0301	1184.5	-1.0969	1.5250e-05	0.10334	liquid
21.000	1.450	71.775	0.013932	-0.44422	19.758	0.040913	5.722	9.5370	1160.1	-1.0008	1.4069e-05	0.10430	liquid
22.000	1.450	70.665	0.014151	9.0459	29.565	0.49705	5.8123	10.085	1133.5	-0.90325	1.3020e-05	0.10484	liquid
23.000	1.450	69.483	0.014392	19.076	39.944	0.95832	5.8974	10.682	1104.9	-0.80288	1.2081e-05	0.10498	liquid
24.000	1.450	68.220	0.014659	29.695	<mark>5</mark> 0.950	1.4266	5.976	11.340	1073.9	-0.69779	1.1232e-05	0.10471	liquid
25.000	1.450	66.862	0.014956	40.964	62.651	1.9042	6.0484	12.078	1040.6	-0.58545	1.0454e-05	0.10405	liquid
26.000	1.450	65.393	0.015292	52.968	75.141	2.3939	6.113	12.925	1004.5	-0.46250	9.7355e-06	0.10301	liquid
27.000	1.450	63.789	0.015677	65.820	88.551	2.8999	6.172	13.926	965.25	-0.32430	9.0613e-06	0.10164	liquid
28.000	1.450	62.015	0.016125	79.687	103.07	3.4277	6.2284	15.155	921.99	-0.16406	8.4190e-06	0.099862	liquid
29.000	1.450	60.021	0.016661	94.820	118.98	3.9859	6.283	16.742	873.63	0.028890	7.7952e-06	0.097672	liquid
30.000	1.450	57.719	0.017325	111.63	136.76	4.5883	6.344	18.948	818.36	0.27297	7.1732e-06	0.095018	liquid
31.000	1.450	54.952	0.018198	130.89	157.27	5.2609	6.4264	22.384	752.91	0.60440	6.5284e-06	0.091797	liquid
32.000	1.450(51.357	0.019472	154.29	182.52	6.0618	6.5662	28.974	670.52	1.1108	5.8131e-06	0.087785	liquid
33.000	1.450	45.670	0.021896	187.70	219.45	7.1966	6.915	50.428	552.16	2.1104	4.8772e-06	0.082744	upercritical
34.000	1.450	26.227	0.038129	290.76	346.04	10.961	8.2878	154.04	393.52	5.7891	2.7995e-06	0.072017	upercritical
35.000	1.450	18.615	0.053721	344.62	422.52	13.185	7.585	45.216	417.49	6.7857	2.3764e-06	0.050051	upercritical
36.000	1.450	16.043	0.062333	368.49	458.87	14.210	7.196	30.303	436.27	6.7671	2.3032e-06	0.045324	upercritical
37.000	1.450	14.475	0.069086	385.70	485.87	14.950	6.966:	24.392	451.59	6.5915	2.2854e-06	0.043362	upercritical
38.000	1.450	13.346	0.074928	399.88	508.52	15.554	6.8168	21.189	464.92	6.3739	2.2889e-06	0.042386	upercritical
39.000	1.450	12.466	0.080217	412.32	528.64	16.077	6.7152	19.171	476.92	6.1480	2.3033e-06	0.041886	upercritical
40.000	1.450	11.747	0.085129	423.64	547.07	16.544	6.6434	17.781	487.97	5.9262	2.3239e-06	0.041658	upercritical

Thermal Properties of Para-H2@1.45 MPa (14.5 bar)

https://webbook.nist.gov/cgi/fluid.cgi?Action=Load&ID=B5000001&Type=IsoBar&Digits=5&P=1.45&THigh=40&TLow=15&TInc=1&RefState=DEF&TUnit=K&PUnit=MPa&DUnit=kg%2Fm3&HUnit=kg%3Fm3&HUnit=kg\%3&HUnit=kg\%3&HUnit=kg\%3&HUnit=kg\%3&HUnit=kg\%3&HUnit=kg\%3&

	А	В	С	D	E	F	G	Н	1	J	K	L	М	N
1		original data	Polynomial			1.38907E+02			138.907					
2	Temperature (K)	Density (kg/m3)		error(%)		-8.23187E+00			-8.23187					
3	15	77.241	77.72	-0.48		3.70104E-01			0.370104					
4	16	76.451	76.48	-0.03		-6.21765E-03			-0.00621765					
5	17	75.618	75.38	0.24										
6	18	74.738	74.39	0.35										
7	19	73.806	73.46	0.34				De	nsity (kg	/m3)				
8	20	72.82	72.57	0.25						,,				
9	21	71.775	71.67	0.10		y = -6.21	.765E-	-03x ³ +	3.70104E-	01x ² -	8.2318	87E+00	x +	
10	22	70.665	70.73	-0.07		,			1 200075	0.2				
11	23	69.483	69.71	-0.23					1.369076+0	JΖ				
12	24	68.22	68.57	-0.35	90									
13	25	66.862	67.27	-0.41	80									
14	26	65.393	65.79	-0.39	70	•••••	•••••••							
15	27	63.789	64.07	-0.28	/0 C0		•		· · · · · · · · · · · · · · · · · · ·	•••••				
16	28	62.015	62.09	-0.07	2 00 Z							****		
17	29	60.021	59.80	0.22	· <u>ت</u> 50								•••••	
18	30	57.719	57.17	0.55	ີ ພິ 40			MRA	H ₂				-	
19	31	54.952	54.16	0.79	Õ 30		1	9 K - 2						
20	32	51.357	50.73	0.62	20									
21	33	45.67	46.85	-1.18	20									
22					10									
23		Cylinder	Tube		0									
24	m_dot(l/s)	0.5	0.5			1 5		20	21	-		20		25
25	m_dot(m^3/s)	0.0005	0.0005			TD		20	Z)		50		55
26	m_dot(kg/s)	0.0369	0.0369						Tempera	ture()	$\langle \rangle$			
27			A						rempere		1			

Inlet mass flow rate

Results of Upper (Cylinder) H₂ Moderator

Steady State Heat Transfer Analysis for Cylinder Moderator, Heat Source

Uniform heating for H₂

CAK RIDGE

Steady State Heat Transfer Analysis for Cylinder Moderator, Density of H₂

Requirement: > 72.9 kg/m³

Cylinder (upper) Moderator				
H ₂ Density at 19 K (kg/m^3) 73.806				
Average H ₂ Density (kg/m^3)	72.569			
Variation (%)	1.68			

Steady State Heat Transfer Analysis for Cylinder Moderator, Temperature of H₂

Steady State Heat Transfer Analysis for Cylinder Moderator, Temperature of Al

Steady State Heat Transfer Analysis for Cylinder Moderator, Streamlines

Steady State Heat Transfer Analysis for Cylinder Moderator

20 **CAK RIDGE** National Laboratory

Results of Lower (Tube) H₂ Moderator

Steady State Heat Transfer Analysis for Tube Moderator, Heat Source

Steady State Heat Transfer Analysis for Tube Moderator, Pressure

 $\Delta P_{inlet-outlet} = 0.0106 \text{ bar} (= 1.06 \text{ kPa} = 0.15 \text{ psi} = 0.0105 \text{ atm})$

Requirement: < 0.05 bar

High pressure due to stagnation point

Steady State Heat Transfer Analysis for Tube Moderator, Density of H₂

Requirement: > 72.9 kg/m³

Tube (lower) Moderator	
H ₂ Density at 19 K (kg/m^3)	73.806
Average H ₂ Density (kg/m^3)	72.832
Variation (%)	1.32

Steady State Heat Transfer Analysis for Tube Moderator, Temperature of H₂

Requirement: < 32K

Steady State Heat Transfer Analysis for Tube Moderator, Temperature of Al

Peak heating location is not where the peak temperature occurs.

Steady State Heat Transfer Analysis for Tube Moderator, Streamlines

Steady State Heat Transfer Analysis for Tube Moderator, Temperature & Velocity

Steady State Heat Transfer Analysis, Residence Time

Comparison between Requirements and CFD Results

	Poquiromont	CFD Result			
	kequiremeni	Cylinder Moderator	Tube Moderator		
Pressure drop (bar)	< 0.05	0.023	0.0106		
Maximum hydrogen temperature (K)	< 32	22.9	24.1		
Average hydrogen density (kg/m ³)	> 72.9	72.569	72.832		
Residence time (s)	> 0.2	0.64	0.93		

• Except for average hydrogen density, all requirements are met with at least a factor of 2 margin

- High confidence that margins are greater than uncertainties

Summary

- Most requirements are met except for the average hydrogen density (72.9 kg/m³).
 - All other requirements are met with at least a factor of 2 margin
- Neutronics will evaluate sensitivity to hydrogen density and will update hydrogen density requirement
- Final moderator analysis will include additional details
 - Moderator inlet temperatures updated based on single loop in series CMS design
 - Inclusion of moderator weld backer geometry
 - Inclusion of cylinder moderator transition to concentric flow geometry

2% of 700 kW Q = 15 kW Part 2 : CFD analysis for the upper reflector (similar to lower reflector)

Requirements for MRA Reflectors

• This thermal-hydraulic analyses were performed to demonstrate that the current MRA design (without moderators, which were done in separate analyses and the results were also documented in a separate presentation) can meet the following requirements.

Requirements

- Pressure drop < 15 psi
 - Low pressure drop allows flexibility for CMS design
- Maximum water temperature < 100°C
 - No water boiling
- Maximum Aluminum temperature < 100°C
- Maximum Beryllium temperature < 100°C

Geometry of Upper MRA

Steady State Heat Transfer Analysis for Upper MRA, Geometry

CAD model from Ken Gawne

Upper PreModerator (H₂O)

Upper Reflector (H₂O)

Steady State Heat Transfer Analysis for Upper MRA, Geometry

Steady State Heat Transfer Analysis for Upper MRA, Mesh Configuration

Steady State Heat Transfer Analysis for Upper MRA, Mesh Settings

Upper MRA (Without Moderators)						
	AI	Ве	PreModerator (H2O)	Reflector (H2O)		
Mesh Type	Polyhedral mesh	Polyhedral mesh	Polyhedral mesh	Polyhedral mesh		
Base Size (m)	1.00E-02	1.00E-02	4.00E-03	2.00E-03		
Target Surface Size (m)	5.00E-03	5.00E-03	2.00E-03	1.00E-03		
Minimum Surface Size (m)	1.00E-03	1.00E-03	4.00E-04	2.00E-04		
Number of Prism Layers	0	0	8	8		
Prism Layer Stretching	0	0	1.5	1.5		
Prism Layer Total Thickness (m)	0	0	1.33E-03	7.00E-04		
Number of Cells	2.42E+05	1.77E+05	1.13E+06	5.18E+06		
Total Cells			6.74E+06			

Thermal Properties

Material	Thermal Conductivity, k (W/m-K)	Density, ρ (kg/m³)	Specific Heat, Cp (J/kg-K)	Viscosity (Pa-s)
Al	167	2800	880	N/A
Ве	168	1850	1925	N/A
H2O (PreModerator & Reflector)	0.617	995	4173	7.98E-04

Steady State Heat Transfer Analysis for Upper MRA, Heat Source

Steady State Heat Transfer Analysis for Upper MRA, Heat Source

Steady State Heat Transfer Analysis for Upper PreModerator, Pressure

 $\Delta P_{inlet-outlet} = 0.17$ bar (= 17.4 kPa = 2.53 psi = 0.17 atm)

Requirement: < 15 psi

Steady State Heat Transfer Analysis for Upper Reflector, Pressure

 $\Delta P_{inlet-outlet} = 0.56$ bar (= 56.5 kPa = 8.2 psi = 0.56 atm)

Requirement: < 15 psi

Steady State Heat Transfer Analysis for Upper PreModerator (H₂O), Temperature

Requirement: < 100°C

Peak Temperature of Upper PreModerator: 55.3°C

Steady State Heat Transfer Analysis for Upper Reflector(H₂O), Temperature

Requirement: < 100°C

Peak Temperature of Upper Reflector: 50.4°C

Steady State Heat Transfer Analysis for Upper Be, Temperature

Requirement: < 100°C

Peak Temperature of Upper Be: 59.3°C

Steady State Heat Transfer Analysis for Upper Al, Temperature

Requirement: < 100°C

Peak Temperature of Upper AI: 60.1°C

Steady State Heat Transfer Analysis for Upper MRA, Velocity & Temperature

Comparison between Requirements and CFD Results

Upper MRA (without Moderator)

	Requirement	CFD Re	esult
Maximum Aluminum Temperature (°C)	< 100	60.	1
Maximum Beryllium Temperature (°C)	< 100	59.3	
		PreModerator	Reflector
Pressure Drop (psi)	< 15	2.53	8.2
Maximum Water Temperature (°C)	< 100	55.3	50.4

- All requirements are met with at least a factor of 1.83 margin
 - High confidence that margin to requirements is significantly higher than uncertainties

Summary

- The locations of the inlet and outlet for the reflector were adjusted several times to reduce the pressure drop from 22 psi to 8 psi. The main idea is to reduce the vortex near the outlet since the pressure within the vortex region is very low and thus the pressure would be increased.
- All requirements are met with high margins
- Items to be included in final analysis
 - Update inlet/outlet geometry based on final backbone design
 - Preliminary backbone inlet/outlets are moved slightly from locations used in this analysis
 - Update inlet temperature to match final process systems inlet temperature – current estimate is 32.3 C
 - Include weld backer geometry for the reflector vessel welds

Part 3 : CFD analysis for the MRA backbone

Requirements for MRA Backbone

• This thermal-hydraulic analyses were performed to demonstrate that the current MRA backbone design can meet the following requirements.

• Requirements

- Maximum water temperature < 100°C
 - No water boiling
- Maximum stainless-steel temperature < 200°C
- Pressure drop < 0.5 psi
 - For the cooling loops 1 & 2
- Pressure drop < 4.0 psi
 - For the cooling loops 3 & 4
- Goal : minimize stainless steel temperatures in order to minimize thermal displacements

Geometry

MRA Backbone

MRA Full Backbone Geometry

MRA Full Backbone Geometry, Pipe Cut Outs

Higher temperature is expected around the Pipe cut outs (difficult to route cooling passages)

Pipe Cut Outs:

slots with clearance for routing piping to the component

MRA Full Backbone Geometry, Vacuum Regions

Higher temperature is expected around the vacuum regions (difficult to route cooling passages)

MRA Full Backbone Heat Source

QSS = 26,054 W

3.7% of 700 kW

energy deposition from Lukas

CAK RIDGE

MRA Full Backbone Heat Source (Solid)

CAK RIDGE National Laboratory

Heat Source in Water

Q_Water approximation: $Q_{water} = QSS * \frac{\rho_{water}}{\rho_{SS}} = QSS * \frac{997.561}{7969}$ $Q_{water} = 229.57W$

SS316 Material Properties from Ansys

SS316 Material Properties From Ansys

Stainless steel, 316, annealed Data compiled by Ansys Granta, incorporating various sources including JAHM and MagWeb.

Density (kg/m³)	7969
Coefficient of Thermal Expansion (1/K)	1.61E-05
Specific Heat (J/kg-K)	486.1
Thermal Conductivity (W/m-K)	14.58
Young's Modulus (Pa)	1.95E+11
Poisson's Ratio	0.27
Bulk Modulus (MPa)	1.413E5
Shear Modulus (MPa)	76772
Tensile Ultimate Strength (MPa)	565.1
Tensile Yield Strength (MPa)	252.1

MRA Full Backbone, Water Pressure

Requirement for 7.5 GPM circuit : < 0.5 psi

MRA Full Backbone, Water Pressure

MRA Full Backbone, Water Temperature

Requirement: < 100°C

Peak : 61.2°C

CAK RIDGE

MRA Full Backbone, Water Streamlines

Streamline Animation

65 💐

MRA Full Backbone, SS Temperature

Requirement: < 200°C

Peak : 117.3°C

Thermal Contact Resistance of MRA Backbone

R = L/k

CAK RIDGE National Laboratory

MRA Full Backbone, SS Temperature Comparison

Comparison between Requirements and CFD Results

MRA Backbone

	Requirement	CFD Result
Maximum Water Temperature (°C)	< 100	61.2
Maximum Stainless-steel Temperature (°C)	< 200	117.3
Pressure Drop (psi) for Loop 1	< 0.5	0.255
Pressure Drop (psi) for Loop 2	< 0.5	0.404
Pressure Drop (psi) for Loop 3_1	< 4.0	1.64
Pressure Drop (psi) for Loop 3_2	< 4.0	1.12
Pressure Drop (psi) for Loop 4	< 4.0	3.17

Summary

- All requirements are met.
 - Water does not boil.
 - Stainless-steel temperature is less than 200°C
 - Pressure drops for loops 1 & 2 are less than 0.5 psi
 - Pressure drops for loops 3 & 4 are less than 4.0 psi.

