

Preliminary Tube Hydrogen Vessel Stress Analysis

Jim Janney 8/17/2022

ORNL is managed by UT-Battelle, LLC for the US Department of Energy

Tube Moderator Stress Analysis Overview

- Hydrogen vessels shall be designed to the intent of the ASME BPVC
- Analysis guided by 2021 ASME BPVC Section VIII D2
 - Elastic Analysis Approach
 - Allowables from code case 2478-1
 - AI 6061-T6 Hand Forging up to 4" thickness S = 85 MPa, S_{M+B} = 127 MPa
 - AI 6061-T6 Welded S = 55 MPa, S_{M+B} = 83 MPa
- Only 19 bar Internal Pressure considered
 - Negligible thermal stress due to CTE ~ 0 at 20 K operating temperature
 - Negligible static head and fluid momentum effects due to low density operating fluid
 - Negligible deadweight load vessel mass is 0.26 kg
 - Non-existent snow and wind loading
 - Earthquake loads will need to be considered in final design

Material Properties

Aluminum 6061-T6 properties

Modulus of Elasticity (GPa)	68.9
Poisson's Ratio	0.33
(100° F) Sm (MPa)	85
Sm Weld (MPa)	55

ASME BPVC Section8 Division 2 Allowable equivalent stress values Code case 2478-1

		Sm	Sm Membrane+	
	Sm	Membrane+	Bending + Secondary	
	Membrane	Bending (1.5x)	(3x)	
Non-Weld Regions				
(MPa)	85 MPa	127 MPa	254 MPa	
Weld regions	55 MPa	83 MPa	165 MPa	

Note: 6061-T6 is stronger and more ductile at 20 K (-423°F) operating temperature, but the BPVC does not allow taking credit for this increase

Cryogenic Materials Data Handbook, AFML-TDR-64-280, Air Force Materials Laboratory, 1970

Weld Heat Affected Zone Width

- Weld width of cosmetic pass of up to 5mm from cylinder moderator prototypes
- Heat affected zone width of 1mm from the chart below
- Total weld heat affected zone width of 6 mm, or 3mm from the centerline of the weld

Actional Laboratory REACTOR SOURCE

Nominal Tube Moderator Geometry

- Tube moderator geometry from preliminary optimization
 - 170mm tube length
 - 2mm wall thickness
 - 1.7mm window thickness
- ½ symmetry model with symmetry boundary condition on the symmetry planes

CAK RIDGE HIGH FLUX SPALLATION National Laboratory REACTOR SOURCE

Ansys AREAS 2022 F AUG 17 2022 MAT NUM 14:26:14 File: C:\Users\ugj\Documents\STS\MRA\Moderators\Analysis\lowerrefhydvesselana

Ansys File Name: lowerhydvesselanalysis-r5.db Parasolid File Name: lowerrefhydvesselanalysis-r5c.x_t Creo File Name: lowerrefhydvesselanalysis-r5.prt

Mesh

- 10 node tet elements
- 451888
 elements
- 739569 nodes
- Mesh refined in high stress corners

Loads

- 19 bar internal pressure
- Symmetry conditions on symmetry plane
- Fixed vertically at hydrogen pipe end

Displacement Contour Plot

- Maximum displacement is 0.084mm
- Tubes make for extremely stiff structure with very little displacement from 19 bar loads

CAK RIDGE National Laboratory

Von Mises Stress Contour Plot

- Maximum Von Mises Stress of 124 MPa on radius of window joining the two shorter tubes
- All locations 127 MPa or lower, which meets the M+B allowable

Von Mises Stress Contour Plot

• Cross section cut along moderator horizontal center

 Asymmetry caused by hydrogen pipes seems to have little effect on high stress regions

 Hydrogen pipe connection shows low stresses

Von Mises Stress Contour Plot - Welds

- Stresses much below the 83 MPa weld M+B allowable in region of the weld
- Weld is ~12 mm from the high stress zones in either direction

CAK RIDGE National Laboratory

Results Summary

	Maximum Von Mises Stress (MPa)	Minimum Distance Overstress to Weld (mm)
Allowable	127	3
Actual	124	12

Conclusions

- The preliminary tube hydrogen vessel design meets the intent of the ASME BPVC
- Stresses in bulk and weld affected zones meet allowable stress requirements
- Additional loads to consider during final design but not expected to affect vessel design
 - Internal vacuum condition
 - Seismic loads