

Preliminary Cylinder Hydrogen Vessel Stress Analysis

Jim Janney 8/17/2022

ORNL is managed by UT-Battelle, LLC for the US Department of Energy

Cylinder Hydrogen Vessel Stress Analysis Overview

- Hydrogen vessels shall be designed to the intent of the ASME BPVC
- Analysis guided by 2021 ASME BPVC Section VIII D2
 - Elastic Analysis Approach
 - Allowables from code case 2478-1
 - Al 6061-T6 Hand Forging up to 4" thickness S = 85 MPa, S_{M+B} = 127 MPa
 - AI 6061-T6 Welded S = 55 MPa, S_{M+B} = 83 MPa
- Only 19 bar Internal Pressure considered
 - Negligible thermal stress due to CTE ~ 0 at 20 K operating temperature
 - Negligible static head and fluid momentum effects due to low density operating fluid
 - Negligible deadweight load vessel mass is 0.30 kg
 - Non-existent snow and wind loading
 - Earthquake loads will need to be considered in final design

AK RIDGE | HIGH FLUX | SPALLATI ISOTOPE | NEUTRON Onal Laboratory | REACTOR | SOURCE

Material Properties

Aluminum 6061-T6 properties

Modulus of Elasticity (GPa)	68.9
Poisson's Ratio	0.33
(100° F) Sm (MPa)	85
Sm Weld (MPa)	55

ASME BPVC Section8 Division 2 Allowable equivalent stress values Code case 2478-1

		Sm	Sm Membrane+	
	Sm	Membrane+	Bending + Secondary	
	Membrane	Bending (1.5x)	(3x)	
Non-Weld Regions				
(MPa)	85 MPa	127 MPa	254 MPa	
Weld regions	55 MPa	83 MPa	165 MPa	

Note: 6061-T6 is stronger and more ductile at 20 K (-423°F) operating temperature, but the BPVC does not allow taking credit for this increase

Cryogenic Materials Data Handbook, AFML-TDR-64-280, Air Force Materials Laboratory, 1970

3

Weld Heat Affected Zone Width

- Weld width of cosmetic pass of up to 5mm from cylinder moderator prototypes
- Heat affected zone width of 1mm from the chart below
- Total weld heat affected zone width of 6 mm, or 3mm from the centerline of the weld

Actional Laboratory REACTOR SOURCE

Nominal Cylinder Hydrogen Vessel Geometry

- Cylinder moderator geometry from preliminary optimization
 - 30mm H height
 - 100mm H diameter
 - 5.15mm bottom wall thickness
 - 2.6mm cylindrical wall thickness
 - 5.1mm top wall thickness
- Axisymmetric Model

CAK RIDGE National Laboratory

Ansys File Name: upperhydvesselanalysis-r5.db Parasolid File Name: upperrefhydvesselanalysis-r5c.x_t Creo File Name: upperrefhydvesselanalysis-r5.prt

Mesh

 8 node axisymmetric quad elements ELEMENTS

NUM

МАТ

- 2678 elements
- 8851 nodes
- 6 to 8 elements thru the wall except in hydrogen pipe

File: C:\Users\ugj\Documents\STS\MRA\Moderators\Analysis\upperrefhydvesselanaly

Loads

- 19 bar internal pressure
- Axisymmetric boundary condition
- Fixed vertically at hydrogen pipe end

File: C:\Users\ugj\Documents\STS\MRA\Moderators\Analysis\upperrefhydvesselanaly

Displacement Contour Plot

- Maximum displacement is 0.615mm
- Cylinder moderator shows significant deflection under internal pressure
 - Need to consider dishing top and bottom surfaces to compensate for deflection at nominal pressure

CAK RIDGE HIGH FLUX SPALLATION National Laboratory REACTOR SOURCE

Von Mises Stress Contour Plot

- Maximum Von Mises Stress of 127 MPa on radius of neck
- All locations 127 MPa or lower, which meets the M+B allowable

CAK RIDGE National Laboratory

Von Mises Stress Contour Plot - Welds

- Stresses much below the 83 MPa weld M+B allowable in region of the weld
- Weld is ~8 mm from the high stress zones in either direction

10

Results Summary

	Maximum Von Mises Stress (MPa)	Minimum Distance Overstress to Weld (mm)
Allowable	127	3
Actual	127	8

11

Conclusions

- The preliminary cylinder hydrogen vessel design meets the intent of the ASME BPVC
- Stresses in bulk and weld affected zones meet allowable stress requirements
- Deflection of 0.6 mm seen on the bottom of the vessel
 - During final design, consider dishing of the top and the bottom of the vessel to give flat surfaces at operating pressures
- Additional loads to consider during final design but not expected to affect vessel design
 - Internal vacuum condition
 - Seismic loads

Conclusions

- The preliminary cylinder hydrogen vessel design meets the intent of the ASME BPVC
- Stresses in bulk and weld affected zones meet allowable stress requirements
- Deflection of 0.6 mm seen on the bottom of the vessel
 - During final design, consider dishing of the top and the bottom of the vessel to give flat surfaces at operating pressures
- Additional loads to consider during final design but not expected to affect vessel design
 - Internal vacuum condition
 - Seismic loads