

MRA Neutronics Optimization

lgor Remec Lukas Zavorka Kristel Ghoos Joel Risner

MRA PDR Review

March 26-27, 2024

ORNL is managed by UT-Battelle, LLC for the US Department of Energy

Outline

- Introduction
- Early optimization investigation
- Optimization with high fidelity models
- Preliminary Design Configuration
- Further work: simultaneous MRA/target/beam profile optimization
- Conclusion

Preliminary STS KPPs

KPP	Thresholds	Objectives					
Demonstrate independent control of the proton beam on the two target stations	Operate beam to FTS at 45 pulses/s, with no beam to STS Operate beam to STS at 15 Hz, with no beam to FTS Operate with beam to both target stations: 45 pulses/s at FTS and 15 Hz at STS						
Demonstrate proton beam on STS at 15 Hz	100 kW beam power	700 kW beam power					
Measure STS neutron brightness	Peak brightness of 2 × 10 ¹³ n/cm ² /sr/Å/s at 5 Å	Peak brightness of 2 × 10 ¹⁴ n/cm ² / sr/Å/s at 5 Å					
Beamlines transitioned to operations	Eight beamlines successfully passed the integrated functional testing per the TTOP acceptance criteria	Eight beamlines successfully passed the integrated functional testing per the TTOP acceptance criteria					

TTOP = Transition to Operation Parameters.

Peak brightness

The pathway to high brightness

To achieve high moderator brightness, we can:

- Create compact and intense neutron production zone in the target
 - Keep small proton beam footprint on the target
 - Use high density and high-Z target material
- Place moderators near the target (tight coupling)
- Reduce the size of the moderator viewed areas
- Use pure para hydrogen as moderator material
- Include H₂O premoderators in moderator design
- Surround moderators with good reflector material (beryllium enhances fast neutron reflection into moderators and neutron production by (n,2n) reactions; a standard at spallation neutron sources)

Moderator brightness could also be increased by:

- Increasing proton beam power (# protons/pulse; proton energy) •
- Increase pulse repetition rate (increases time-averaged brightness) •

Selected for STS: 1.3 GeV, 700 kW, 15 Hz

The pathway to high brightness... and limitations

High p-beam power (700 kW), short pulse operation, and small beam footprint delivers high amounts of energy in small volume of the target, resulting in high stresses

- Material properties limit the allowable stress and the acceptable energy density deposition
- Reducing stresses requires larger footprint which conflicts with the small footprint desired for neutronics performance

Reducing the size of the moderator viewed area increases the brightness but decreases the beam intensity – conflicting effects

- Previous analyses performed at SNS (Zhao et al, Rev Sci. Inst. 84, 2013) showed that neutron beam dimensions of ~ 3 cm provide good illumination of sample sizes up to ~1 cm
- For the STS moderator viewed areas of 3 cm × 3 cm, or diameter 3 cm were selected
 - Smaller viewed areas allow smaller moderator and tighter coupling to the neutron production area in the target
 - Significant increase in brightness can be achieved
- High neutron flux and high heating rates require use of liquid hydrogen for moderator (rules out hydrocarbon moderators even in liquid state)
 - max. ~ 1.2 W/cc in H_2 , ~8 W/cc in H_2 O and Al
 - Required high brightness demands use of parahydrogen (and ortho-para converter)

ORNL is managed by UT-Battelle, LLC for the US Department of Energy

STS moderators: CSG "simple" models

Two moderators:

- Both coupled, para-H at 20°K,
- H₂O pre-moderator

Top: cylindrical moderator

Bottom: tube moderator

STS Cylindrical Moderator Design

- **"2 dimensional"** moderator, small, vertical dimension minimized
- NOT a volume moderator (3D)
- 16 beam lines
- 3 x 3 cm² viewed area
- Key parameters:
 - Hydrogen radius
 - Premoderator radial thickness
 - Premoderator top/bottom thickness
 - Beryllium radius
 - Moderator position relative to target edge

Original plan: optimize for peak brightness

STS Tube Moderator Design

- "1dimensional" moderator
- 6 beam lines
- 3 cm diameter viewed areas
- Key parameters:
 - Tube length
 - Tube radius
 - Premoderator thickness
 - Beryllium radius
 - Moderator position

Original plan: optimize for time-integrated brightness

Original/Old moderator optimization procedure

Main components:

- MCNPX
- Pstudy_mod^[1]
- Run_mcnpx
- Optimizer
- Optimization routines by Mockus^[2]

[1] F. B. Brown et al., Monte Carlo Parameter Studies and Uncertainty Analysis with MCNP5, PHYSOR-2004, *American Nuclear Society Reactor Physics Topical Meeting*, Chicago, IL, April 25-29 (2004)

[2] J. Mockus et al, Bayesian
Heuristic Approach to discrete and
Global Optimization, Kluwer
Academic Publishers,
Boston/London/Dordrecht (1996).

CAK RIDGE

Moderator optimization: figures-of-merit

Peak-brightness integral up to E< 5 meV or 10 meV Time-integrated brightness integral up to E< 5 meV or 10 meV

12 **CAK RIDGE** National Laboratory

Moderators peak versus time-averaged brightness

CYLINDRICAL MODERATOR

		Pre-n	Offset		
Figure-of-Merit	H ₂ Radius	Radial	Bottom	Тор	from W Edge
(Brightness)	(cm)	(cm)	(cm)	(cm)	(cm)
Time-averaged	8.500	2.000	2.992	2.000	8.7
Peak	4.341	2.000	2.607	2.000	8.7
Intermediate (Peak-Tint)	6.100	2.000	2.700	2.000	8.7

TUBE MODERATOR											
Figure-of-Merit	Tube length	Pre-mod. Thickness	Offset from W Edge								
(Brightness)	(cm)	(cm)	(cm)								
Time-averaged	19.820	2.727	8.7								
Peak	10.330	2.727	8.7								
Intermediate (Peak-Tint)	15.000	2.727	8.7								

Moderator Optimization

Ļ

- Middle configuration between the peak and the time-integrated brightness is preferred
- 5% loss in peak and time-integrated brightness in comparison with 15% and 20% losses when optimized to resp. maxima

STS Moderator Performance

Peak brightness

Time-integrated brightness

Souther States And Sta

15

Ę

Pulse shapes for different configurations of cylindrical and tube moderators

500

500

Ę

ORNL is managed by UT-Battelle, LLC for the US Department of Energy

Simultaneous moderator and target (MT) optimization

L. Zavorka et al., An unstructured mesh based neutronics optimization workflow, NIM A 1052 (2023) 168252.

Moderator models with unstructured mesh

Optimization with Dakota, UM models, Pareto

Efficient global algorithm for 6 sets of weights to balance the two objectives:

Objective =
$$w_1 \frac{peak}{1.519e - 12} + w_2 \frac{tint}{2.7985e - 8}$$

Runs from previous sets are re-used for the next \rightarrow total number of MCNP runs = 38 !!

Set	Nr runs (new)	<i>w</i> ₁	w_2 (1 – w_1)	R _{mod} [mm]	R _{pm} [mm]	H _{pm} [mm]	R _{Be} [mm]	X _{pos} [mm]	Peak [e-12]	Tint [e-8]
1	25 (24)	0	1	61.4	31.8	29.2	194	3.2	1.254 (81.5%)	2.893 (100 %)
2	25 (2)	0.25	0.75	55.0	29.3	29.0	188	1.8	1.338 (86.9%)	2.855 (98.7 %)
3	25 (2)	0.5	0.5	47.5	29.3	28.7	178	-0.2	1.439 (93.5 %)	2.750 (95.1 %)
4	25 (2)	0.7	0.3	40.9	29.5	29.1	181	1.4	1.497 (97.3 %)	2.577 (89.1 %)
5	27 (4)	0.85	0.15	38.8	26.0	29.5	159	2.7	1.530 (99.3 %)	2.446 (84.5 %)
6	27 (4)	1	0	35.7	24.6	29.0	150	4.0	1.539 (100 %)	2.279 (78.8 %)

CAK RIDGE

Optimization with Dakota, UM models, Pareto

Cylindrical moderator parameters for three optimal designs

	R _{mod} [mm]	R _{pm} [mm]	H _{pm} [mm]	R _{Be} [mm]	X _{pos} [mm]	Peak Brightness [e-12]	Time-integrated brightness [e-8]
Time int	62	33	30	187	2	1.218 (80%)	2.899 (100%)
Middle	47	29	29	173	1	1. 435 (94%)	2.734 (94%)
Peak	35	26	28	165	1	1.524 (100%)	2.276 (79%)
Time int Middle Peak	62 47 35	33 29 26	30 29 28	187 173 165	2 1 1	1.218 (80%)1.435 (94%)1.524 (100%)	2.899 (2.734 (2.276 (

类

Variable Al-vessel thickness has significant effect

24

Black = fixed
Purple = pareto-front fixed

Grey = variable Orange = pareto-front variable

From fixed to variable thickness:

- 13% tint + 2% peak

Fixed & variable Al-vessel thickness: summary

<u>Peak</u> optimized	R _{mod} [mm]	R _{pm} [mm]	H _{pm} [mm]	R _{Be} [mm]	X _{pos} [mm]	Peak Brightness FOM [e-12]	Time-integrated brightness FOM [e-8]				
Peak optimized design											
Fixed (40)	27	29	200	4	1.494	2.484				
Variable	35	26	28	165	1	1.524 (+2%)	2.276 (-9%)				
Tint optimiz	ed design										
Fixed	80	26	28	200	1	1.260	3.312				
Variable	62	33	30	187	2	1.218 (-4%)	2.899 (-13%)				

F

Cylindrical moderator: sensitivity to parameters

Parameters:

CAK RIDGE

National Laboratory

26

- Radius of the hydrogen vessel $R_{
 m mod}$ (range: 32 to 80 mm)
- Thickness of the water premoderator radially and above

$R_{ m pm}$ (range: 18 to 35 mm)

- Thickness of the water premoderator below the moderator
 *H*_{pm} (range: 25 to 40 mm)
- Radius of the beryllium vessel $R_{
 m Be}$ (range: 150 to 200 mm)
- Position of the moderator axis in the direction of the proton beam
 X_{pos} (range: -20 to 20 mm)

- 2-dimensional moderator configuration
- 12 beam lines
- 30 mm × 30 mm viewed areas

Cylindrical moderator peak brightness sensitivities

Cylindrical moderator time-integrated brightness sensitivities

Tube Moderator: sensitivity to parameters

- 1 dimensional moderator configuration
- 6 beam lines
- 30 mm diameter viewed areas

Parameters:

- the hydrogen tube length T_{len} (range: 120 to 230 mm),
- the annular thickness of the water premoderator
 R_{pm} (range: 25 to 29.2 mm),
- the radius of the beryllium vessel R_{Be} (range: 180 to 220 mm),
- the position of the moderator in the direction of the proton beam X_{pos} (range: -20 to 20 mm).

Tube moderator peak brightness sensitivity

Tube moderator timeaveraged brightness sensitivity

Preliminary design: cylindrical moderator parameters

Optimized for	Para-H Radius (mm)	Lower Premod. (mm)	Radial Premod. (mm)	Top Premod. (mm)	Be Radius (mm)	Offset ¹ (mm)
	UM	UM	UM	UM	UM	UM
Peak	40	27.5	20	20	162.5	87
Mid	50	30	29	29	172.5	87
Tave	62	30	33	33	182.5	87

¹Offset is the distance from the front edge of tungsten plate to the vertical axis of the cylindrical moderator.

Based on this information the Instrument Systems decided that the middle configuration is the best and should be used for both moderators.

Preliminary design: tube moderator parameters

Optimized for	Para-H Tube Diameter (mm)	Para-H Tube length ¹ (mm)	Premod. Thickness (mm)	Be Radius (mm)	Offset ² (mm)
Peak	30	125	25	182.5	87
Mid	30	170	27.5	182.5	87
Tave	30	210	27.5	182.5	87

¹The length of the tube perpendicular to the proton beam

²Offset is the distance from the front edge of the tungsten plate to the point defined by the intersection of angular bisectors of the tube moderator.

Peak brightness: Cylindrical and Tube moderator

Based on this analysis and additional investigation by the Instrument Systems it was decided that the middle configuration is the best and should be used for both moderators.

Tave brightness: Cylindrical and Tube moderator

Based on this analysis and additional investigation by the Instrument Systems it was decided that the middle configuration is the best and should be used for both moderators.

35 **CAK RIDGE** National Laboratory

configurations moderators different tube and for ylindrica shapes Pulse ΰ of

Cylindrical moderator, pulse shapes, 5 A KPP: 2.0E+14 n/cm²/Å/sr/s

CAK RIDGE

Further work: simultaneous MRA/target/beam profile optimization

ORNL is managed by UT-Battelle, LLC for the US Department of Energy

Simultaneous moderator and target optimization

Simultaneous moderator-target-beam optimization

Cylindrical moderator: 6 parameters

Tube moderator: 7 parameters

40

Target: only tungsten height varied

Proton beam : keep footprint 62 cm2 (nx=10) Parameter c varied

c=target_height / sigma_y

Target_height

Cylindrical moderator: MTB optimization

Preliminary comparison CYLINDRICAL	Rh2 (mm)	t_pm_sid e (mm)	t_pm_bot (mm)	t_pm_top (mm)	r_be (mm)	x_shift (mm)	t_height (mm)	с	Sigma_x (mm)	nx	Sigma_y (mm)	ny	Peak	tint
Tint 2023	51.39	37.89	31.41	29.81	183.80	6.58	69.97	2.38	51.00	10	29.79	10	7.5103e-13	1.5911e-8
Tint 2022	62	33	30	33	182.5	0	58	-	51.7	3.9	19.8	4	6.06e-13	1.45e-8
Middle 2023	47.50	31.62	29.97	28.70	183.38	6.58	69.97	2.31	49.4	10	30.74	10	8.0745e-13	1.566e-8
Middle 2022	50	29	30	29	172.5	0	58	-	51.7	3.9	19.8	4	7.04e-13	1.41e-8
Peak 2023	41.3	25.0	29.0	26.0	175.0	20.0	75.0	2.26	45.2	10	33.63	10	8.59E-13	1.41E-08
Peak 2022	40	20	27.5	20	162.5	0	58	-	51.7	3.9	19.8	4	7.54e-13	1.18e-8

CAK RIDGE

Tube moderator: MTB optimization

Preliminary comparison														
TUDE	T_len	t_pm_top	t_pm_right	t_pm_bot	t_pm_left	r_be_t	t_height	-	sigma_x		sigma_y		Deals	tint
IUDE	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	C	(mm)	nx	(mm)	ny	reak	IINI
Tint 2023	211.1	27.75	41.00	18.49	31.45	200.0	74.91	2.60	52.00	10	29.14	10	7.433E-13	2.162E-08
Tint 2022	210	27.5	27.5	27.5	27.5	220	58	-	51.7	3.9	19.8	4	7.0511e-13	1.6703e-8
Middle 2023	172.6	25.59	31.24	18.80	30.22	191.5	74.91	2.68	53.60	10	28.33	10	8.003E-13	2.086E-08
Middle 2022	170	27.5	27.5	27.5	27.5	220	58	-	51.7	3.9	19.8	4	6.7347e-13	1.8957e-8
Peak 2023	120.7	25.90	31.61	18.49	25.59	182.6	69.91	2.53	54.20	10	28.02	10	8.314E-13	1.777E-08
Peak 2022	125	25.0	25.0	25.0	25.0	220	58	-	51.7	3.9	19.8	4	6.2457e-13	1.9326e-8

CAK RIDGE

Effect of proton beam footprint (cylindrical moderator)

Optimized R_m , H_t , σ_y for footprints: 30 cm2, 60 cm2, 90 cm2

Optimal radius of the hydrogen does not depend on beam footprint

43 **CAK RIDGE** National Laboratory

Simultaneous target and moderator optimization preliminary results

Monolithic target:

- 21-segment,
- SuperGaussian beam profile ~90 cm²

Lasagna target:

- 66 mm tall,
- 15-segment,
- SuperGaussian beam profile ~60 cm²

Improved brightness is due to:

- narrower beam (~+6%),
- 15-segment configuration (~+5%),
- taller target (~+4%)

Conclusion

- The current stage in the preliminary neutronics design provides neutron beamlines with exceptional brightness at long neutron wavelengths, as required in the STS mission statement.
- The moderators exceed the preliminary KPP requirement for brightness at 5 Å by 25 % to 55% margin.
- Application of advanced techniques allows us to perform neutronics analyses at the high-fidelity level typically used only in more advanced project stage.
- Advance optimization workflow with high fidelity models was developed and is available for future work.
- Neutronics analyses performed to date provide solid foundation for successful preliminary design completion and clear path forward to support the CD-2, CD-3, and final MRA design.

Thank you for your attention!

ORNL is managed by UT-Battelle, LLC for the US Department of Energy

ORNL is managed by UT-Battelle, LLC for the US Department of Energy

Effect of Para-H / Ortho-H Content

ORNL is managed by UT-Battelle LLC for the US Department of Energy

Para-H / Ortho-H effect

Cylindrical moderator, Peak brightness

Tube moderator, Tave brightness

CAK RIDGE National Laboratory

Para-H / Ortho-H effect

Cylindrical moderator, Peak brightness

Cylindrical Mod., Parah %, with Centered p-beam Sigy-6.202

Tube moderator, Tave brightness

Tube Mod, Parah %, with Centered p-beam Sigy-6.202

Ratio of peak brightness

Comparison: experiment – simulation for HFIR Cold source

Experiment: J. L. Robertson and E. B. Iverson, Measurement of the Neutron Spectrum of the HB-4 Cold Sour at The HFIR, Reactor Dosimetry State of the Art 2008, Proc. Of the 13th Int. Symp., ISBM-13 978-981-4271-10-3, pp.85-93 (2008).

Simulation: I. Remec, F. Gallmeier, HFIR Cold Source Upgrade Options, ORNL/TM-2018/820 SNS-106100200-TR0235-R00

51

Open slide master to edit

Comparison: experiment - simulation Para 99% - Para 95% HB4 Brightness Relative to 35 % Para-H 1.3 99 % Para-H 95 % Para-H 10^{5} 1.2 90 % Para-H 70 % Para-H

Brightness Change Relative to 35% Para-H

52

MCNPX simulations, existing HFIR CS brightness change relative to 35% para-H,

I. Remec, F. Gallmeier, HFIR Cold Source Upgrade Options, ORNL/TM-2018/820 SNS-106100200-TR0235-R00

Experiment: Motoki Ooi et al. brightness change relative to 35 % para-H

Motoki Ooi et al., Experimental studies of the effect of the ortho/para ratio on the neutronic performance of a liquid hydrogen moderator for a pulsed neutron source, Nucl. Inst. Meth. A, 659, pp. 61-68 (2011).