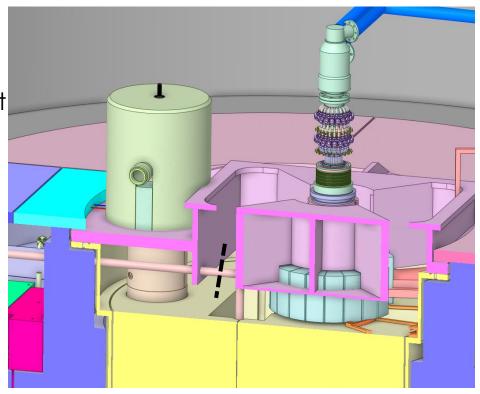
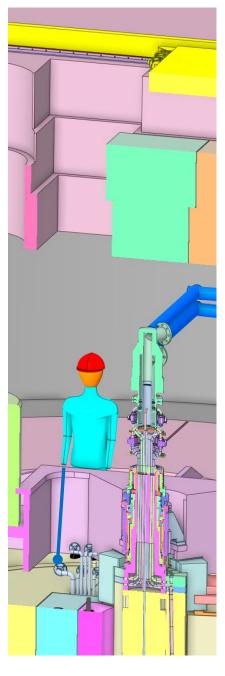


ORNL is managed by UT-Battelle, LLC for the US Department of Energy

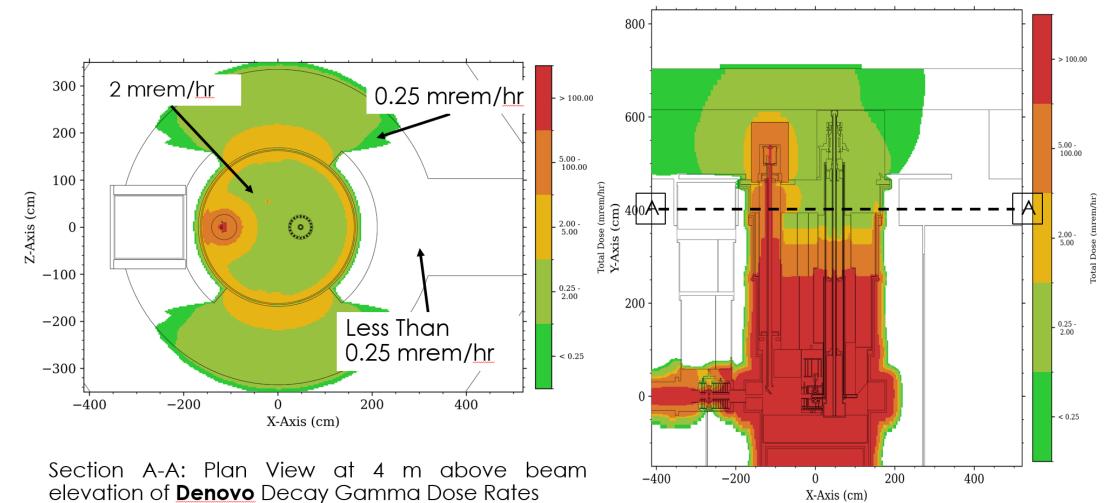
Objective – Show RH features to meet MRA requirements

- Preliminary MRA removal scheme
 - Hands-on access
 - Pipe Cutting
 - Overall replacement time
- Preliminary MRA disposal planning
 - Size & weight limits
 - Classification



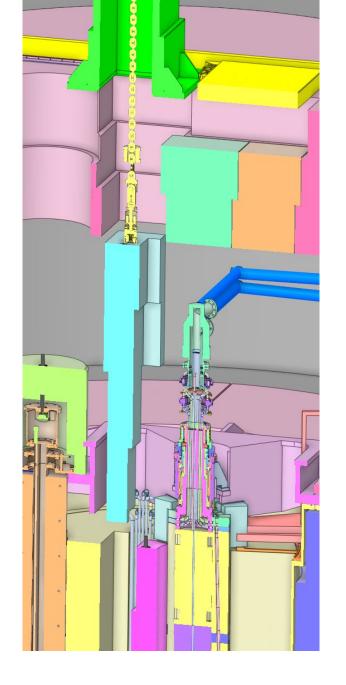

Preliminary MRA Removal Procedure

*Assumes core vessel lid is removed, but all other components in core vessel in place.

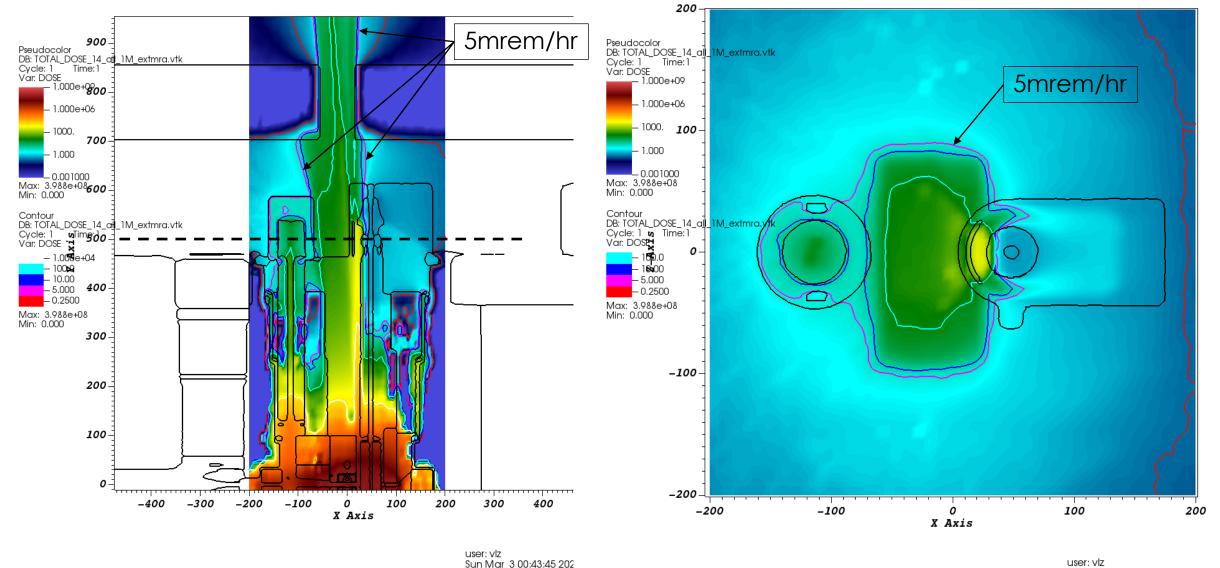

- Cut vacuum/transfer lines to MRA using rotary pipe cutter.
- Blowdown MRA and manually disconnect water lines
- Attach a lifting strap/lanyard to water pipes and transfer line

(All steps are hands-on)

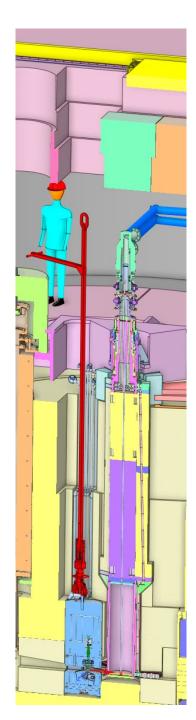
Preliminary MRA Procedure – Neutronics Analysis **Denovo** Gamma Dose Rates after 8 Hours of Decay

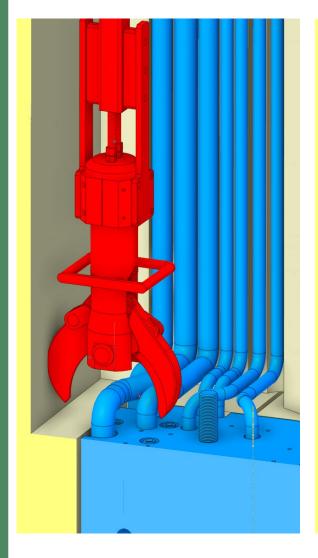


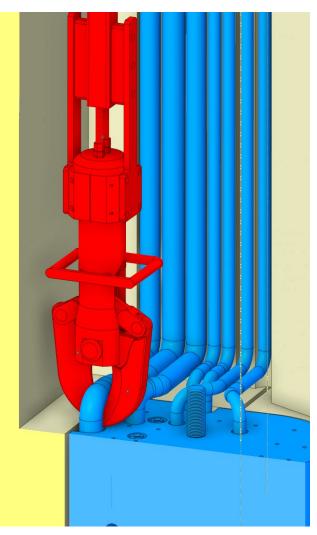
Cross Section View of the **Denovo** Decay Gamma Doses after 8 Hours of Decay

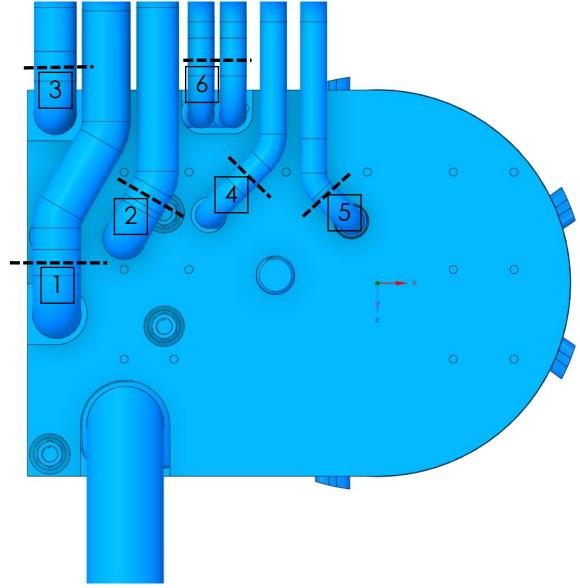

*Assumes 3X target segment removal completed.

- Remove roof plug to access MRA using high bay crane
- Rotate target drive shaft to align 3X segment void into MRA maintenance position.
- Fly in MRA shield block cask and then attach hoist to cask using high bay crane.
- Move sliding shield door out of the way
- Attach Ziplift grapple to shield block
- Retract shield block into the cask
- Move sliding shield door back to cover hatch
- Remove hoist and fly cask out of the way
- Repeat A/R for second shield block.

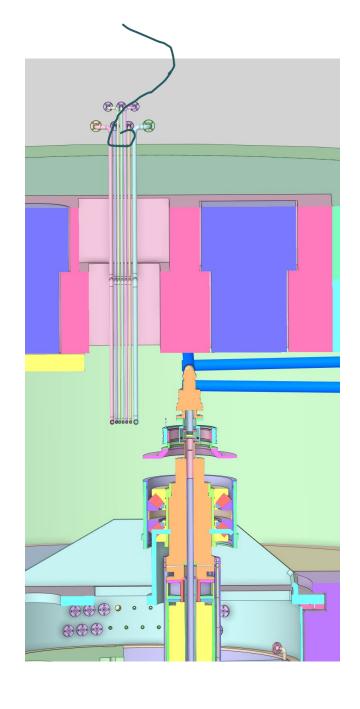

MRA Procedure–Neutronics Analysis–shield block removed

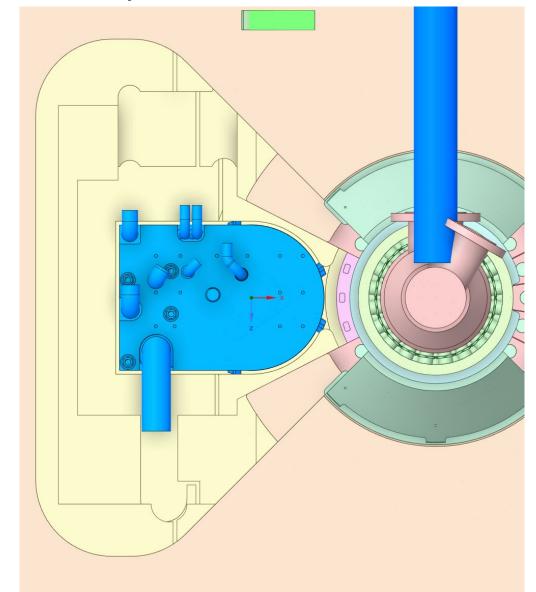

Sun Mar 3 00:08:34 2024

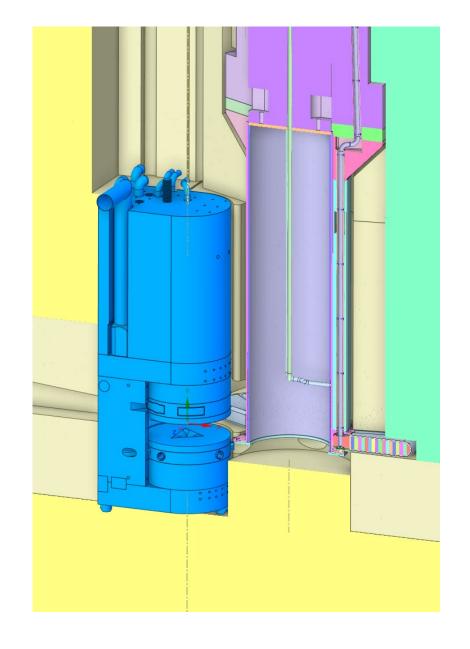

 Fly in long reach hydraulic pipe cutter using high bay crane/aux hoist.
 Keep HPU staged at high bay floor.
 Route hoses as required.
 (Personnel Accessible)



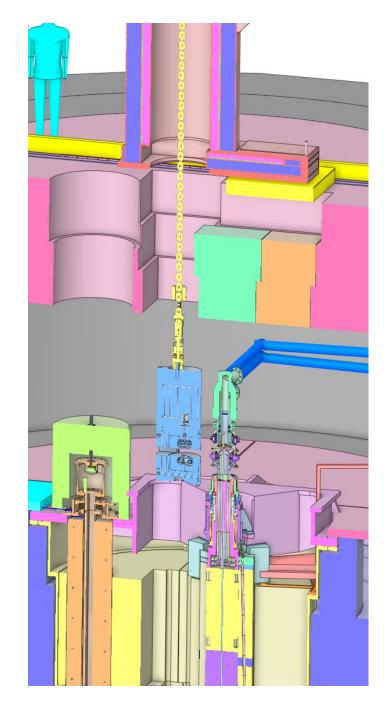
Preliminary MRA Procedure – Pipe Cutting Sequence

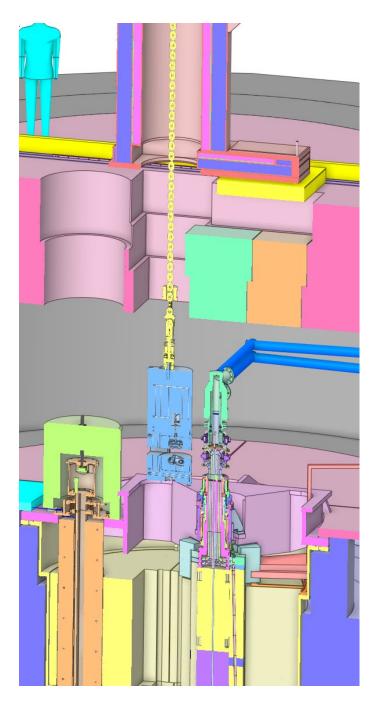




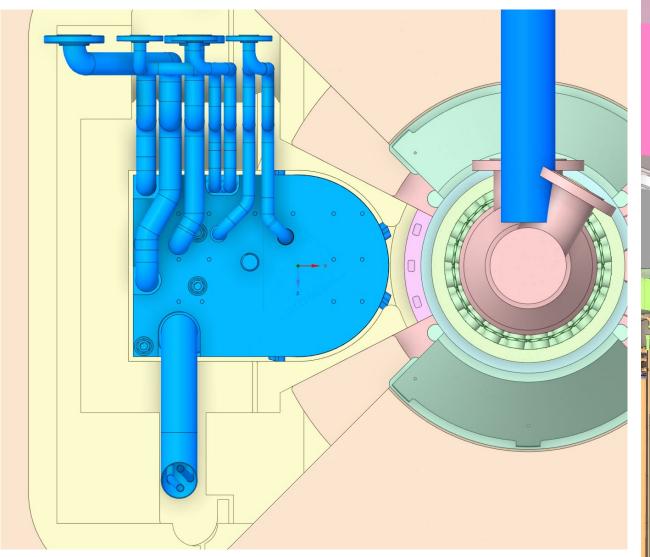

 Cut water pipes and transfer lines and retract out of core vessel via previously attached strap/lanyard; using aux hoist on high bay crane (~30lbs ea water lines, ~30lbs transfer lines).

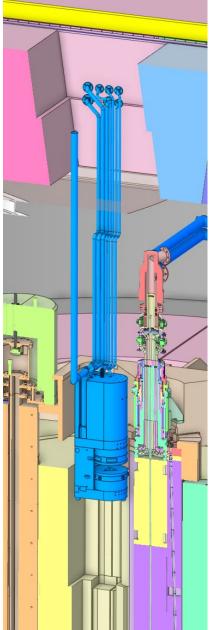
(Personnel Accessible)

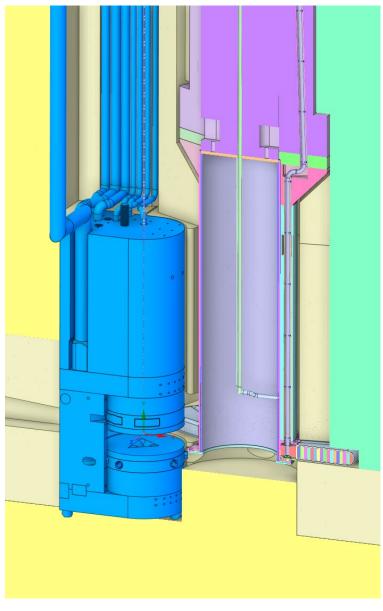

 Retract long reach pipe cutter out of core vessel



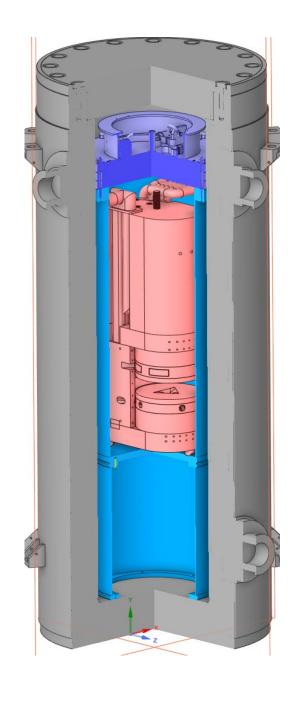
- Move sliding shield door to cover opening
- Fly in MRA cask and attach hoist via high bay crane
- Open sliding shield door
- Raise MRA into the cask
- Close the sliding shield door
- Disconnect hoist and fly MRA cask away
- Repeat similar steps for new MRA installation



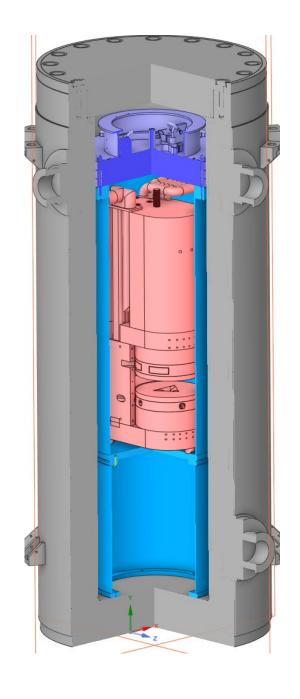

- Current estimated cycle time for MRA removal and replacement: ~200-250 hours
 - Maintenance Prep, Remove CV lid: ~20hrs
 - Disconnect hydrogen & water lines: ~10hrs
 - Target Segments (3X) removal: ~30hrs
 - Shield blocks and MRA removal: ~40hrs
 - MRA and shield blocks install: ~30hrs
 - Connecting Hydrogen and water lines: ~24hrs
 - Target Segments (3X) install: ~40hrs
 - Button up CV: ~20hrs



Preliminary MRA Procedure – Installation



Preliminary MRA Disposal


- Plan to package spent MRA into a steel liner and then package liner into TN-RAM shipping cask
 - TN-RAM cavity size: Ø35" X 111"
 - Liner + lid size: Ø34" X 107" to meet disposal site criteria
 - TN-RAM Payload Capacity: 9500lbs
 - Total activity <30kCi of Co-60 or equiv
 - A2 fraction <3000
 - Avg Specific activity <10Ci/kg
 - Decay heat <500W
 - Dose rate <200mrem/h on TN-RAM surface
 - Dose rate <10mrem/h @ 1m from surface
 - Dose rate <2mrem/h @ truck cab

Preliminary MRA Disposal

- MRA characteristics for disposal assuming 1 year of decay time.
 - Class C-like waste per 10CFR61.55
 - MRA Weight ~ 5000lbs
 - Liner weight ~2900lbs
 - Total activity ~25kCi (not Co-60 or equiv)
 - Decay Heat <150W
 - Dose rates on cask exterior for DOT shipment are achieved after ~12-16 weeks of decay

Preliminary MRA Removal & Installation Time Study

Normal F	Remove			Time Duratio					
•	Beam Off - Decay Time			8					
Parallel	Vent CV, A/R.			4					
	Remove hydrogen and make MRA inert		standard (hands-on) rigging	4					
	Perform radiological survey		Standard (Harids-Off) Figging	-					
	Lay Herculite on TDR floor and around Target Segment opening, A/R			2					
	Disconnect sensors/wiring from outer target drive shroud			1					
	Unbolt and remove shroud in two pieces			0.5					
	Remove supplemental shielding from water pipes & other, A/R			2					
	Perform radiological survey								
	Disconnect bellows from drive shaft and top plate			0.5					
	Disconnect top plate from support structure			0.5					
	Turn off main water supply to Loop 1			0 pe					
	Drain and partially blow down water supply down into crown			0.75 pe					
	Disconnect water supply and return jumper lines from target crown.			1 pe					
Parallel	Attach lifting apparatus to bellows assembly. Secure to TDR hoist			0.5					
	Lift bellows over crown and transfer within TDR for storage			0.5					
	Attach lifting apparatus to top plate. Secure to TDR hoist			0.5					
	Lift top plate over crown and transfer with TDR for storage			0.5					
	Reconnect main water supply and return jumper lines to crown. Re-e	establish water flow		0.5 1.5 p€					
	Remove high bay floor plugs, A/R		2						
	Drain Loop 2 and perform partial blow down of target shield blocks ar	nd AADA water circuit		2					
		iu ivika water circuit		2					
	Perform radiological survey Manually disconnect target shield block water joint flange connection below CV lid								
			1 2						
	Manually disconnect MRA water joint flange connections below CV li			2					
	Cut hydrogen transfer lines	rotary pipe cutter		2					
	Attach lifting sttaps/lanyard to water pipes and transfer line			32.5					
	Perform removal of 3X target segments Re-install target segment shield block into CV, A/R			32.3					
				1					
	removal MRA roof plug			0.5					
	Rotate drive shaft to position segment void for MRA removal Position shielded cask 1 adjacent to floor hatch	Overhand survey (EOT) should be aliced							
	-	Overhead crane (50T), shackles, slings		0.25					
	Unbolt cask bottom plate.								
	Lift cask and transfer above floor hatch.			0.5					
	Attach portable hoist to shielded cask			0.5					
	Lower chain from hoist and attach Ziplift grapple to lifting stud on fixe		remote tooling						
	Retract Shield Block 1 into cask	Hoist Assy (13T), Ziplift	remote tooling	0.5					
	Manually engage cask support pins			0.25					
	Disconnect Ziplift from shield block. Unrig and remove hoist.	0 (507)		0.5					
	Install Cask lid	Overhead crane (50T), hoist rings	standard (hands-on) rigging	0 ba					
	Rig cask to overhead crane			0.5					
	Lift cask and position on bottom plate. Secure together	o I I (rem) Ti life		0.5					
	Transfer cask-shield block to laydown area in high bay	Overhead crane (50T), Ziplift	standard (hands-on) rigging	0.5					
	Repeat steps above to remove 2nd shield block			6					
	Perform radiological survey								
	Rig long reach hydraulic pipe cutter to crane	L.		0.25					
	Make all hydraulic pipe cutter/HPU connections. Position HPU in high	Day		0.5					
	Transfer pipe cutter and lower into core vessel.			0.5					
	Cut hydrogen transfer line			1					
	Extract cut transfer line out of core vessel to TDR or high bay			0.5					
	Cut water pipes in prescribed sequence. Remove section after each of		8						
-	Retract pipe cutter out of core vessel/TDR. Disconnect HPU.			0.5					
	Transfer pipe cutter to storage in high bay			0.5					
	Position MRA shielded cask above floor hatch	Overhead crane (50T), shackles, slings		1					

nstall_			
Prep MRA in vertical orientation in high bay			1
Perform radiological survey			
Rig to MRA. Attach Ziplift			
Lower MRA into core vessel			1
Perfomr survey & alignment of new MRA			8
Disconnect Ziplift from MRA. Unrig and remove XXXX			0.5
Position shield block cask 2 adjacent to floor hatch	Overhead crane (50T), shackles, slings		1
Unbolt cask bottom plate.			0.5
Lift cask and transfer above floor hatch.			0.5
Remove Cask lid	Overhead crane (50T), hoist rings	standard (hands-on) rigging	0
Attach portable hoist to shielded cask			1
Lower chain from hoist and attach Ziplift grapple to lifting	stud on shield block	remote tooling	0.25
Slightly raise Shield Block 2 inside cask	Hoist Assy (13T), Ziplift	remote tooling	0.25
Manuallydisengage cask support pins			0.25
Lower shield block 2 into core vessel			0.75
Disconnect Ziplift from shield block. Unrig and remove ho	ist.		0.5
Rig cask to overhead crane			0.5
Lift cask and position on bottom plate. Secure together			0.5
Transfer cask to laydown area in high bay	Overhead crane (50T), Ziplift	standard (hands-on) rigging	0.5
Repeat steps above to install other shield block			6
Rotate drive shaft to position segment void for new segm	ent install		0.5
Perform radiological survey			
Perform install of 3X target segments			
Manually connect water supply and return flange connect	ions beneath CV lid		4
Leak test each connection joint			4
Manually connect transfer lines via welding			8
Leak test welded joints			8
Turn on main water supply to Loop 2; fill MRA circuit			0.5
Turn on hydrogen supply; fill MRA			0.5

Preliminary Waste Disposal Data

2								10 year o	peration, 1	250 (~2mo) dec	ay				10 ye	ar operati	on, 1 y	year decay						
3																								
1	Table 1				FR61.55 Li	mits		Activity		Concentration	Waste		Α	A	Activ	ty Total	$\overline{}$	Concentra	Waste				A	Α
5				Ci/m3	0.1Ci/m3					Ci/m3*	Class		С	В		Ci	$\overline{}$	Ci/m3*	Class				С	В
5		tivated met		80	8			C-14	6.76E-03		Α				C-14		$\overline{}$	8.76E-03	Α					
		ctivated me		220	22			Ni-59	2.66E+00	3.44E+00	Α				Ni-5	2.66	E+00	3.44E+00	Α					
3	Nb-94 in a	activated me	etal	0.2	0.02			Nb-94	3.03E-03	3.93E-03	Α				Nb-9			3.93E-03	Α					
	Tc-99			3	0.3			Tc-99	7.68E-02		Α				Tc-99	7.68	$\overline{}$	9.94E-02	Α					
0	I-129			0.08	0.008			I-129	0	0.00E+00					I-129		-	0.00E+00						
1	Total alph	na >5y t1/2	nCi/g	100	10			Tot alpha	5.16E-02	2.19E+01	С				Tot a	pha 5.80	E-02	2.46E+01	С					
_	Pu-241		nCi/g	3500	350		l	Pu-241	2.64E+00	1.12E+03	С				Pu-2		_	1.07E+03	С					
3	Cm-242		nCi/g	20000	2000			Cm-242	9.29E-01	3.94E+02	Α				Cm-2	42 2.45	E-01	1.04E+02	Α					
4																								
5	Table 2			_	Ci/m3	Ci/m3		Activity		Concentration	Waste				Activ	ity Total	_	Concentra	Waste					
6				col 1 (A)	col 2 (B)	col 3 (C)			Ci	Ci/m3*	Class					Ci		Ci/m3*	Class					
_	Total < 5y	t1/2		700	no limit	no limit		Total	1.89E+04		В				Tota		$\overline{}$	1.17E+04	В					
8	H-3			40	no limit	no limit		H-3	7.77E+03	1.01E+04	В				H-3	7.41	E+03	9.59E+03	В					
9	Co-60			700	no limit	no limit		Co-60	9.71E+03	1.26E+04	В				Co-6	8.68	E+03	1.12E+04	В					
0	Ni-63 in a	ctivated me	tal	35	700	7000		Ni-63	3.17E+02	4.11E+02	В				Ni-6	3.16	E+02	4.09E+02	В					
1	Sr-90			0.04	150			Sr-90	4.43E-03	5.73E-03	Α				Sr-90	4.34	E-03	5.61E-03	Α					
2	Cs-137			1	44	4600		Cs-137	0	0.00E+00					Cs-1	7	0	0.00E+00						
3																								
4																								
5							Total de	cay heat =	175.125	W	*uses wa	aste form volume (liner vo	lume)		Total decay h	at = 140	.167	W	*uses was	te form vo	lume (line	r volume)		
6																								
7							Tota	l activity =	36731.5	Ci					Total activ	ty = 255	02.4	Ci						
-																-,		-						

Preliminary Waste Disposal Data

Table 6. MRA Cask Lead Thickness to Achieve 10.00 mrem/hr

Decay Time		Lead	d Thickness fo	ickness for 10.00 mrem/hr								
	Negative X		Negative Y	Positive Y	Negative Z	Positive Z						
(weeks)	cm	cm	cm	cm	cm	cm						
1	15.54	14.08	15.12	8.50	13.17	13.29						
2	15.24	13.77	14.82	8.22	12.85	12.93						
3	15.05	13.59	14.66	8.06	12.70	12.77						
4	14.93	13.43	14.53	7.95	12.57	12.64						
5	14.84	13.27	14.39	7.85	12.44	12.51						
6	14.75	13.12	14.26	7.77	12.31	12.37						
9	14.50	12.82	13.93	7.54	11.97	12.00						
12	14.24	12.58	13.71	7.30	11.76	11.78						

TN-RAM cask contains 5.88" thick lead walls encased by $\frac{3}{4}$ " steel plate on the interior and 1.5" steel plate on the exterior.

Max lead thickness required to shield to 10mrem/hr on contact after 12 weeks of decay time is 14.24cm (5.61").

