
EPICS Support for OPC UA – Cheat Sheet
This document version applies to release 0.10.

Concepts
A Session is a named connection between client and server (0..n per IOC).
Any variable on the server is also called an Item, which is accessed through its NodeID,
consisting of a numerical namespace index and a name or numerical ID.
To monitor (subscribe to) items, they are added to a Subscription (0..n per Session).

Initialization from startup script
opcuaSession <name> <server URL> [options…]

Create a new session.

name Name of the session to create

server URL URL of the OPC UA server to connect to

options Option list (series of ‘key=value’ pairs)

opcuaSubscription <name> <session> <interval> [options…]

Create a new subscription.

name Name of the subscription to create

session Name of the session this subscription is related to

interval Publishing interval for the subscription in ms [double]

options Option list (series of ‘key=value’ pairs)

opcuaOptions <pattern> <options…>

Set session/subscription specific options.

pattern Name pattern for the session/subscription to configure
(* and ? are supported for batch operations)

options Option list (series of ‘key=value’ pairs)

Valid session options for the Unified Automation SDK client:

debug Verbosity level of debugging [default: 0 = off]

autoconnect Automatically connect/reconnect to server [default: y]

nodes-max Maximum number of nodes used in any low-level service call
(client will split larger requests into multiple batches)

read-nodes-max Maximum number of nodes per read service call

(client will split larger read requests into multiple batches)

read-timeout-min Timeout (holdoff period) after read service call [ms]
(with one node if read-timeout-max is set)

read-timeout-max Timeout (holdoff period) after read service call with max number of
nodes [ms]

write-nodes-max Maximum number of nodes per write service call
(client will split larger write requests into multiple batches)

write-timeout-min Timeout (holdoff period) after write service call [ms]
(with one node if write-timeout-max is set)

write-timeout-max Timeout (holdoff period) after write service call with max number of
nodes [ms]

sec-mode Requested security mode
[default: ‘best’; must use ‘None’ for running with no security]

sec-policy Requested security policy [default: use best available]

sec-id Set file to read identity credentials from

Valid subscription options for the Unified Automation SDK client:

debug Verbosity level of debugging [default: 0 = off]

priority Priority of the subscription [0..255; default: 0 = lowest]

opcuaMapNamespace <session> <index> <uri>

Map a locally used namespace index to a unique namespace URI on the server.

session Name of the session to configure

index Locally used namespace index to map

uri Server side namespace URI to map to

OPC UA Security Setup
Important: see the separate security related README for details and instructions.

A minimal setup will include creating a self-signed X.509 certificate for the IOC client (and
the matching private key) and trusting the certificate that the server presents by adding it to
the list of explicitly trusted certificates inside the PKI file store.

opcuaSetupPKI <PKI location>

Set up the PKI file store of the IOC client, where certificates and revocation lists are stored.

PKI location Path to the file based PKI store (certificates and revocation lists in
trusted/certs, trusted/crl, issuers/certs, issuers/crl)

opcuaClientCertificate <public key> <private key>

Set up the OPC UA client certificates to use for the IOC client.

public key Path to the file containing the certificate (public key)

private key Path to the file containing the private key

opcuaSaveRejected <rejected cert location>

Set the location where the IOC client will save rejected certificates.

rejected cert location Path where rejected certificates will be saved

It is not recommended to use OPC UA without the Security features. Doing so requires
explicit configuration by setting the option sec-mode=None for the session.

Database configuration
All OPC UA related records use the setting DTYP = ”OPCUA”.
Periodic SCAN settings will create a “polling” behavior, which is not suggested for OPC UA.
Instead, items should be monitored for changes by connecting them to a subscription and
setting SCAN = ”I/O Intr”.

Simple setup: one item = one record, no structures
In addition to DTYP and SCAN, the link in the INP/OUT field must be set.

@<name> ns=<namespace>;s=<identifierString> [<option>=<value>…]

@<name> ns=<namespace>;i=<identifierNumber> [<option>=<value>…]

name Name of the subscription or session

namespace Namespace index number of the NodeID

identifierString Name (string identifier) of the node

identifierNumber Numerical identifier of the node

Supported options are:

sampling Sampling interval in ms [double; def: -1 = use publishing interval]

qsize Size of server side queue [def: 1 = no queueing]

cqsize Size of client side queue [def: 1.5 * qsize; minimum 3]

discard Discard policy on queue overrun [old/new; def: old = drop oldest]

register Register item with the server for better performance [y/n; def: n]

timestamp Timestamp source [server/source; def: server]

monitor Set up monitor (output record gets bidirectional) [y/n; def: y]

bini Behavior at initialization [read/ignore/write; def: read]

Full setup: one itemRecord, multiple connected data records
For each item, an itemRecord instance is created. Its INP link follows the definition from the
simple setup shown above.
One additional option is supported:

timestamp Set the name of the top level data element that the timestamp is to
be taken taken from, e.g. timestamp=@myTS

All connected data records define their INP/OUT links to point to the itemRecord.

@<item> [<option>=<value>…]

item Name of the itemRecord this data record is connected to

Supported options are:

element Path of the data record’s element inside the item’s structure
[“.” = hierarchy separator; “” = root element in case of no structure]

timestamp Timestamp source [server/source/data; def: server]

monitor Set up monitor (output record gets bidirectional) [y/n; def: y]

In all string values (identifierString, element), double quotes can be escaped by preceding
them with one backslash and separators can be escaped by preceding them with two
backslashes.

Example
The Example is taken from a test setup connecting to a Siemens S7-1500 series PLC.

Startup Script
The following setup in the startup script:

opcuaSession PLC opc.tcp://192.168.1.145:4840

opcuaOptions PLC nodes-max=1000 sec-mode=None

opcuaSubscription FAST PLC 100

opcuaSubscription SLOW PLC 500

creates the session, sets a limit of 1000 nodes per batch for low-level service calls (the
Siemens S7 server has that limitation), disables OPC UA Security and creates two
subscriptions on that session with different publishing periods.

Database Records
Records working with this setup might look like this.

record(longin, "OPC:li1") {

 field(DTYP, "OPCUA")

 field(INP, "@SLOW ns=3;s=\"DB_1\".\"myInt\" sampling=100 qsize=5")

 field(TSE, "-2")

 field(SCAN, "I/O Intr")

}

record(ao, "OPC:ao1") {

 field(DTYP, "OPCUA")

 field(OUT, "@PLC ns=3;s=\"DB_1\".\"myDouble\" monitor=n")

}

record(ao, "OPC:ao2") {

 field(DTYP, "OPCUA")

 field(OUT, "@SLOW ns=3;s=\"DB_1\".\"myDouble\"")

}

record(opcuaItem, "OPC:item1") {

 field(INP, "@FAST ns=3;s=\"DB_1\".\"myStruct\"")

 field(SCAN, "I/O Intr")

}

record(longin, "OPC:sli1") {

 field(DTYP, "OPCUA")

 field(INP, "@OPC:item1 element=Int1")

 field(TSE, "-2")

 field(SCAN, "I/O Intr")

}

record(ai, "OPC:sai1") {

 field(DTYP, "OPCUA")

 field(INP, "@OPC:item1 element=sub2.sub21.Double1")

 field(SCAN, "I/O Intr")

}

The first three records use the simple setup. While OPC:ao1 is bound to the session and is
only writing, OPC:ao2 is monitored, i.e. bound to a subscription and being updated if the
value changes on the PLC. OPC:li1 is sampling the value from the PLC with a higher
frequency (every 100ms) and sets up a server side queue to not lose any updates.

The lower three records show a full setup. The itemRecord OPC:item1 is connecting to a
structured item, and the two data records are connected the itemRecord, pointing to
elements of its structure at different hierarchy levels.
The unusual node identifiers in the example (containing quote characters that have to be
escaped) is the naming style used by TIA Portal for an S7-1500 series PLC.

The itemRecord is bidirectional. Setting its field DEFACTN to read or write selects which
operation the record initiates when triggered through forward link processing or by writing to
its PROC field. Writing to its READ or WRITE fields will explicitly force a read or write operation.

