

EUROPEAN SPALLATION SOURCE

MTCA systems at ESS

PRESENTED BY JOÃO PAULO MARTINS - INTEGRATED CONTROL SYSTEMS DIVISION (ICS)

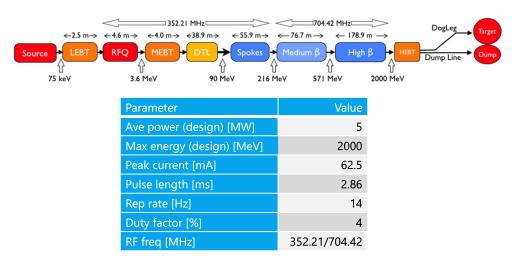
2024-09-15

Agenda

1 Introduction

- 2 MTCA Systems at ESS
- 3 Hardware Components
- 4 Software Components
- 5 Management
- 6 Conclusion

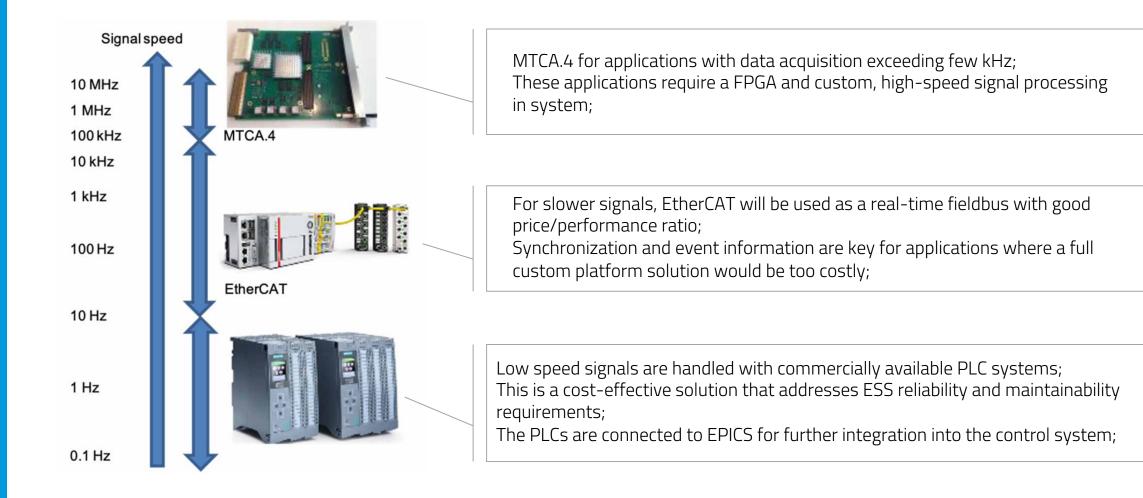
Introduction



Introduction

European Spallation Source (ESS) Status

- ESS in a nutshell:
- Linear Proton Accelerator designed for a beam average power of 5MW;
- Rotating tungsten target station to produce neutrons;
- (up to) 22 neutron instruments (beamlines);
- Current Status:
- Installation and conditioning of the latest cryomodules;
- Beam on dump scheduled to January/25;
- Beam on target in September/25;
- User program to start in 2027;



Introduction

Control System Hardware Strategy defined by ICS

MTCA Systems at ESS

2

MTCA Systems at ESS

ess

Overview of the MTCA applications (as accurate as possible)

System	Crates (BOD)	Crates (BOT)
Timing Distribution System (TD)	25	30
Machine Protection System (MPS)	8	8
RF Distribution System (LLRF and LPS)	91	155*
LEBT and MEBT Choppers	2	2
Diagnostics – Beam Position Monitor (BPM)	19	19
Diagnostics – Beam Current Monitor (BCM)	9	9
Diagnostics – Faraday Cup (FC)	1	1
Diagnostics – Emittance Meter Unit (EMU)	2	2
Diagnostics – Wire Scanner (WS)	6	6
Diagnostics – Beam Loss Monitor (icBLM)	13	18
Diagnostics – Beam Loss Monitor (nBLM)	5	10
Diagnostics – Aperture Monitor and Grid (APTM/Grid)	5	5
Diagnostics – Imaging Systems	2	4
Others (Raster Magnets, test stands)	3	3
Total	191	272

MTCA Systems at ESS

Overview of the MTCA applications

- MTCA is the standard for any high performance application for the linac;
 - No plans for using MTCA systems for target and instruments (except for the timing system);
- ICS Hardware and Integration Group is responsible for:
 - Purchasing/receiving the MTCA components sometimes from an in-kind contribution;
 - Assembly and preparation of a "basic" crate: Chassis/PM/CU + MCH + CPU + EVR;
 - Development and support of the EPICS IOCs for MTCA applications;
 - Deployment and monitoring of IPMI IOCs;
 - Firmware development for the FPGAs shared effort with RF/PBI groups;
 - Inventory management shared effort with RF/PBI groups;
 - End-to-end management of the FBIS and Timing Distribution systems;
- Non-ICS stakeholders (RF/PBI) participate a lot!
 - Testing of the complete system before and after deployment on site;
 - Tracking down and solving configuration, hardware and software issues;
 - Firmware and low-level software development;

3

Hardware Components

Basic components: chassis, power module, MCH

MTCA Chassis – nVent/Schroff

- 9U full redundancy, 12 slots for AMCs with RTMs;
- 3U single MCH, 6 slots for AMCs 4 with RTMs;

Power Modules

- Wiener 1000W used for systems more sensitive to noise;
- N.A.T 600W used for redundancy in the 3U crates;

MCH: NAT-MCH-PHYS

- PCIe Gen3 x4 links to each AMC;
- Standard configuration for 9U or 3U crates;

Timing Distribution System AMCs

Event Generator and Fanout – MRF MTCA-EVM-300

- One unit to act as the Event Master (EVM) of the timing system;
- Input for RF and PPS signal for clock and timestamp distribution;
- 7-Way Fanout for distribution (dual functionality);
- Community supported drivers: mrf (Linux) and mrfioc2 (EPICS);

Event Receiver – MRF MTCA-EVR-300

- Present in any MTCA crate at ESS;
- Clocks from/to TCLKA/TCLKB;
- Driving/receiving differential triggers AMC RX/TX ports 17 to 20 (MLVDS);
- Front panel 4 x TTL outputs, 2 x TTL inputs;
- Delay compensation with feedback;
- Front panel 2 Universal I/O modules;

Event Receiver RTM – MRF MTCA-EVM-300

I/O expansion – up to 5 UnivIO/Delay modules

AMCs and RTMs

Concurrent Tech. AM G6x

- Widely used to host EPICS IOCs
- Intel Xeon Family x86_64
- Up to 16GB of RAM
- Discuntined model AM900 still used;

Struck SIS8300KU

- 10 channels ADC at 125 MSPS
- Xilinx Kintex Ultrascale FPGA
- SFP+ for high speed interconnect
- Analog RTM interface class A1
- Used for BPM, BCM, LLRF

Struck RTMs

- SIS8900 Standard Analog IO
- Down-convterter RTMs

IOxOS IFC1410

- FMC carrier with FPGA and CPU
- Xilinx Kintex Ultrascale MODEL with PCIe endpoints to local CPU and AMC backplane; 1 Gbit DDR3
- Freescale Qoriq MODEL 8 cores / 2GB RAM
- Diskless setup; Boot is controlled by local CPU and downloads FPGA firmware via TFTP from a boot server;
- Used for RFLPS, FBIS, icBLM, nBLM, EMUs;
- Digital RTM interface;

IOxOS IFC1420

- Similar design with FPGA and CPU in the same AMC;
- One HPC FMC slot;
- Custom mezzanine connected to FMC2 providing 8x 16-bit ADC channels
 @ 250 MSPS;
- Analog RTM interface;

FMCs and RTMs

IOxOS ADC3117 – Analog Inputs FMC

- 20x 16-bit ADC channels @ 5 MSPS;
- 2x DAC 16-bit @ 1 MSPS;
- 3M SDR (Camera Link) connectors to fit all 20 channels;

IOxOS DIO3118 – Digital IO FMC

- 20x LVTTL inputs + 1 LVDS input;
- 20x LVTTL outputs + 1 LVDS output;

IOxOS ADC311x – Analog Inputs FMC

- 8x 16-bit ADC channels @ 250 MSPS;
- AC coupled and DC coupled version;

CAENels FMC-Pico – Current Input FMC

4x 20-bit 1MSPS current input with selectable range 1uA/1mA;

IOxOS Digital RTM – RSP_1461

Digital IO extension for IFC1410 – SFP Ethernet 10G / Custom I/O mez.

Other applications

- The idea is to keep a short list of MTCA hardware that would cover all main applications at the facility – we still adhere to this strategy;
- Projects with very specific requirements led to the development of other solutions, either led by an in-kind partner or other groups inside the ESS organization;
 - RTM carrier and specialized RTMs for LLRF piezo controller and local oscillators;
 - CAENels DAMC FMC carrier for the proton beam grid monitoring;
- After a long period of design, fabrication, development, validation an tests we now hope to start looking at the next generation. Or at least as soon as we have beam on target...

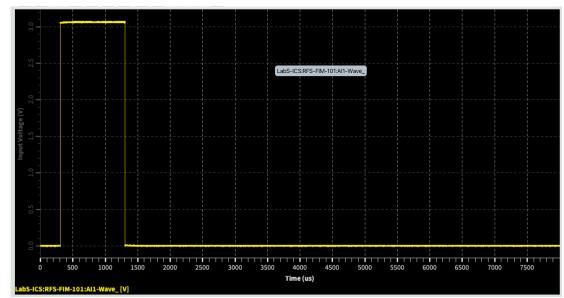
4

Software Components

FPGA Firmware and Hardware Abstraction Layers

- TOSCA Framework from IOxOS was used as the base for the specific applications on the IFC14xO family:
 - Based on PCIexpress, implements a Network-on-Chip technology;
 - Linux kernel module provided by vendor;
- ESS FPGA Framework was designed initially as a standardization effort between LLRF, BPM and BCM projects;
 - Based on Xilinx IP blocks and AXI4 interconnections;
 - Version "1" uses Struck PCIe block and therefore Struck "sis8300" Linux driver;
 - Version "2" uses Xilinx PCIe IP and therefore Xilinx XDMA Linux driver;
 - Microblaze CPU to perform all the peripheral configuration of the AMC and FMCs;
 - Modular register bank that "describes" the functional blocks of the firmware;
- We are slowly moving towards the standardization of all firmwares to the ESS FPGA Framework (XDMA);
 - Will be hard to achieve when we have well estabilished systems running in production, but certainly worthy when we look at the long term operation of the facility;

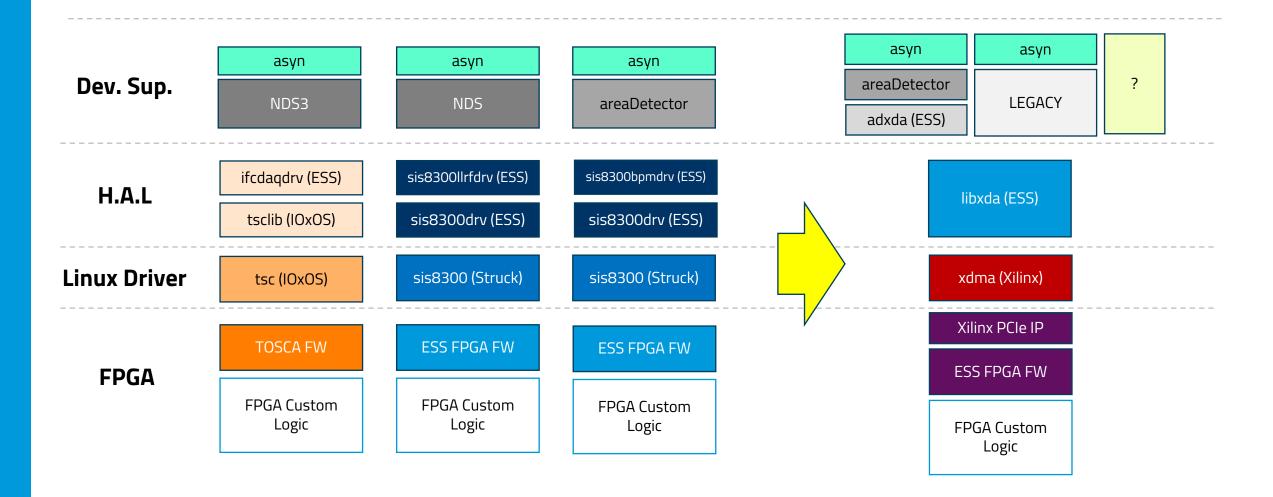
Linux and EPICS



- Two (2) different architectures for CPUs: x86_64 and powerpc64 (IFC1410);
 - The IFC14x0 systems run an Yocto-based distribution with kernel 4.14;
 - Concurrent Tech. CPUs run CentOS 7 (with PREEMPT_RT) and also Yocto (kernel 4.14);
- New release of our Yocto based OS (ESS Linux) is ready to be used in production;
 - Yocto release "kirkstone" with Linux kernel 5.85 with and without RT versions;
 - Fully copatible with both hardware architectures;
 - Fully integrated to ESS INFRA services (remote OS installation, node_exporter, Ansible playbooks, etc..);
- ESS is moving from CentOS7 to Ubuntu (and ESS Linux for MTCA CPUs);

Linux and EPICS

- For EPICS device support, we have a small fauna of modules:
 - LLRF IOC is still based in NDS/asyn;
 - All systems based on IFC1410 uses NDS3/asyn device support;
 - Diagnostics systems are all built on top of areaDetector (mostly 1D NDArrays);



ess

FPGA Firmware and Hardware Abstraction Layers

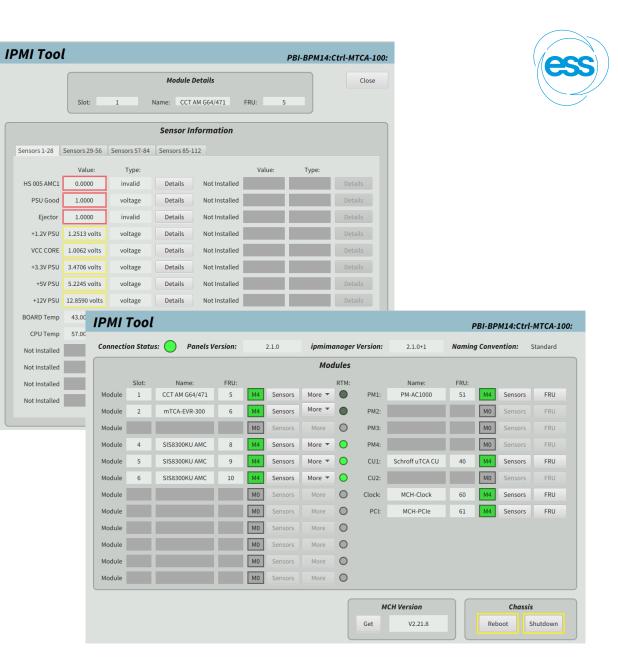
5

Management

Management

Documentation and Inventory

- Inventory management is done through the ESS official tool;
- EAM Enterprise Asset Management;
- Resposability of registering MTCA devices is scattered across different groups and stakeholders;
- Issues are (usually) tracked via JIRA;
- We have two documents released* in the Systems Engineering platform (CHESS) for MTCA systems:
- Supported hardware;
- Rules for high-performance systems;


	pment 👻 Purchasing 👻	Help 👻				CONFIG IA SQLT Org: ES	SS I User: FAYECHICKEN I	arou
Asset 16760 NAT-MCH-PHYS								
	6) n 🖷 🖻 ? 🖽	$ \leftarrow$ \square \rightarrow						
t≖ mch Q	Record View Commer	ts \times Events \times PN	1 Schedules × Safety × Structure D	Details × Documents ×				1
Tag: =ESS.INFR.K01.K	Asset: 1	6760	NAT-MCH-PHYS			Organization:	ESS	
sition Description: NAT-MCH-PHYS	Department:* T		Loaned to Department:			Status:*		
212 - NAT-MCH-PHYS	CHESS-ID:		Alternate Tag:			Energized Equipment:		
Class: MTCACH Tag: =ESS.INFR.K01.K			ESS Legacy ID:	AAA583		RP Instrument:		
sition Description: NAT-MCH-PHYS						Reservable Equipment:		
220 - NAT-MCH-PHYS Class: MTCACH						Supporting NCL:		
Tag: =ESS.INFR.K01.K						Fixed Asset:		
sition Description: NAT-MCH-PHYS	Equipment Details				^	Hierarchy		
6760 - NAT-MCH-PHYS Class: MTCACH	Class:	ITCACH Q=	Commission Date:*	31-DEC-2099		Parent Asset:	16758 0	ē
Tag: =ESS.INFR.K01.K sition Description: NAT-MCH-PHYS	Cost Code:	Q:	Equipment Value (eur):			Dependent:		
	Area Classification:		Assigned To:	d <u>.</u>		Position Parent:	INFR.K01.K05	
Class: MTCACH	Out of Service:)	Meter Unit:	Q:		Position:	INFR.K01.K05.K02	ē
Tag: =ESS.INFR.K01.K sition Description: NAT-MCH-PHYS	Contingency Plan Status:		Material Family:	Q:		Position Description:	NAT-MCH-PHYS	
945 - NAT-MCH-PHYS	Criticality Class:	Q:				Tag:	=ESS.INFR.K01.K05.K02	
Class: MTCACH	Tracking Details				^		TD-D22:Ctrl-MCH-1	
Tag: =ESS.ACC.B01.B sition Description: PBI BPM-02 - MT	Manufacturer:	100112 0.=	Year Built:			System Owner:	KARLVESTIN	
950 - NAT-MCH-PHYS	Manufacturer Name:		Service Life (years):			System Owner Delegee:		
Class: MTCACH Tag: =ESS.ACC.B01.B		135210973	Hardware Version:			Dependent:		
sition Description: PBI BPM-03 - MT	Model: N	IAT-MCH-PHYS	Software Version:			Location:	G02.100.2001.100.100.00	4
955 - NAT-MCH-PHYS	Dent Association						Location for DTL-010ROW	6
Class: MTCACH Tag:	Part Association		Bin		^	Building Area Manager:		
sition Description:	Part:• 1	0069 Q :	Bin:			Area Responsible:	MARCMUNOZ	

Management

IPMI Monitoring

- A lot yet to be done;
- IPMI EPICS monitoring is part of an in-kind contribution from Poland;
- First version (ipmiManager) was delivered and we have some IOCs running (BPM and LLRF)
- Based on openIPMI library;
- Asyn and StreamDevice device support;
- Dynamic generation of DB files and even OPIs;
- We need to put more effort on the deployment of all instances and the setup of an alarm dashboard for our systems;

6

Conclusion

- ESS is fully commited to use MTCA as the standard hardware platform for fast acquisition systems;
- The entire timing distribution system is based on MTCA;
- We aim to provide a standard set of hardware that would cover all needs;
- We work in collaboration with our stakeholders in order to maintain the MTCA systems;
- Many different software/firmware families running on MTCA at ESS, the next goal is to push the standardization on these layers;
- A lot of work still to be done on IPMI monitoring and management of crates;

Thank you / Obrigado / Tack