
Bluesky Queue Server

September 20, 2024

Dmitri Gavrilov

Purpose of Queue Server

2

Interactive

Environment

(IPython)

API-Controlled

Environment

• Remotely controlled experiments

• Autonomous control

• GUI

Components of the QS Stack

• Run Engine Manager (RE Manager) – the ‘execution engine’, core component of the stack.
0MQ API.
https://github.com/bluesky/bluesky-queueserver

• HTTP Server – REST API for communicating with RE Manager, authentication and access
control.
https://github.com/bluesky/bluesky-httpserver

• Python API – user-friendly Python API for communicating with RE Manager directly (over
0MQ) or via HTTP Server (REST API).
https://github.com/bluesky/bluesky-queueserver-api

• RE Widgets are part of Bluesky-Widgets package: widgets for communicating with RE
Manager directly or via the HTTP Server, ‘queue-monitor’ GUI application.
https://github.com/bluesky/bluesky-widgets

3

https://github.com/bluesky/bluesky-queueserver
https://github.com/bluesky/bluesky-httpserver
https://github.com/bluesky/bluesky-queueserver-api
https://github.com/bluesky/bluesky-widgets

Installation of QS (for evaluation)

• QS was designed for Linux. It is expected to work correctly on Mac.

• Install Redis: https://redis.io/docs/latest/operate/oss_and_stack/install/install-redis/

• Installation of QS using conda (mamba):

conda create -n bs-qserver python=3.11 pip -c conda-forge
conda activate bs-qserver
conda install bluesky-queueserver bluesky-httpserver bluesky-queueserver-api -c conda-forge
conda install bluesky-widgets pyqt qtpy -c conda-forge

• Installation of QS using pip (e.x. in activated Conda environment)

pip install bluesky-queueserver bluesky-httpserver bluesky-queueserver-api
pip install bluesky-widgets qtpy pyqt5

4

https://redis.io/docs/latest/operate/oss_and_stack/install/install-redis/

System Configurations

5

WORKER

(runs Bluesky)

MANAGER

RE Manager

CLI

interface

Python

scripts
GUI

applications

Autonomous

agentsL
O

C
A

L
 C

L
IE

N
T

S
Jupyter

console

0MQ

WORKER

(runs Bluesky)

MANAGER

RE Manager

HTTP Server

0MQ

HTTP (REST)

CLIENTS

(local and remote)

Examples of QS Clients

• 'qserver': simple CLI tool (0MQ, 'bluesky-queueserver' package). Access to all RE
Manager API, except batch queue operations.

• 'qserver-console-monitor': simple CLI tool (0MQ, 'bluesky-queueserver' package).
Displays streamed console output of RE Manager.

• 'queue-monitor' GUI application (0MQ, REST, 'bluesky-widgets' package).

• Custom GUI based on RE Widgets (0MQ, REST, 'bluesky-widgets' package).

• Custom applications or scripts based on Python API (0MQ, REST, 'bluesky-
queueserver-api' package), such as GUI applications, autonomous agents, control
scripts etc. The API are friendly enough to be called manually from IPython
environment if necessary.

• Web clients (REST). Communicate with QS via HTTP server.

6

RE Manager (Execution Engine)

• RE Manager internally runs two processes: continuously
running Manager process and disposable Worker process.

• RE Worker Environment is created in a disposable 'Worker'
process.

• Main API:
• 'environment_open' - creates the process and loads the startup code

into the environment;

• 'environment_close' - closes the idle environment (exits the
process in orderly way);

• 'environment_destroy' - terminates the process, used if the
environment becomes unresponsive after crash.

7

Manager

Worker

disposable process

• The environment consists of the namespace with objects created by the startup
code (including 'RE' instance) and means of executing existing plans ('RE(…)'),
functions and uploaded scripts to add/modify objects in the namespace.

• The state of environment and executed plans can be monitored by remote
clients.

Sources of Startup Code

• A directory with alphabetically ordered code files (IPython-style startup code). The
code files are executed in the worker environment namespace one by one. Configuration
parameters: a path to the directory or the name of IPython profile (if the startup code is in
the standard IPython location).

• Python script. Configuration parameter: a path to the script.

• Python module. The module namespace is copied to the environment namespace.
Configuration parameter: module name.

• The source is selected using RE Manager parameters.

Startup code can be reloaded by closing then opening the environment
(‘environment_close’ followed by ‘environment_open’ requests). This operation opens a new
worker process and loads the startup code the clean environment namespace.

8

IPython Kernel

RE Manager can be configured to start IPython kernel in the worker process. Loading of the
startup code and execution of plans, functions and scripts are performed in the kernel, which
gives access to all IPython features. Users may connect to the kernel directly using Jupyter
console (0MQ, see ‘qserver-console’ and ‘qserver-qtconsole’ CLI applications). This mode is
extremely useful in the following cases:

• Transition from IPython-based REPL workflow. Only minor changes to startup code are
necessary. Dual workflow (API based access and REPL via Jupyter console) is possible to
ease the transition.

• Development and testing of plans. Dual workflow allows easy access to the execution
environment via Jupyter console to run plans and inspect variables.

9

Monitoring the Status of RE Manager

'status' API returns information on the
state of the RE Manager and
the Worker:

• manager_state – state of RE Manager;

• worker_environment_exists – indicates
if the worker exists;

• worker_environment_state – state of
the worker;

• re_state – state of Run Engine.

Status can be requested at any time.

10

$ qserver status
12:59:49 - MESSAGE:
{'msg': 'RE Manager v0.0.19.post42+g3d99532',

'items_in_queue': 0,
'items_in_history': 19,

'running_item_uid': None,
'manager_state': 'idle',
'queue_stop_pending': False,

'queue_autostart_enabled': False,
'worker_environment_exists': True,

'worker_environment_state': 'idle',
'worker_background_tasks': 0,
're_state': 'idle',

'ip_kernel_state': 'disabled',
'ip_kernel_captured': True,

'pause_pending': False,
'run_list_uid': 'd0b8f60b-de68-48f5-a4b8-f14413d2d3f5',
'plan_queue_uid': 'e0de02d4-706c-478c-8100-d57591e3f1fe',

'plan_history_uid': 'fee97e6b-3eb6-460e-be24-9fd84aa3ecc6',
'devices_existing_uid': '4a79b1b2-b223-4da0-8157-bedfe4ae8459',

'plans_existing_uid': '99ad05d3-fbb8-4a52-a489-efe87dc25303',
'devices_allowed_uid': '66d07c68-ea08-48d2-a485-5f5a6ec2a315',
'plans_allowed_uid': '969ae7a0-c349-4f53-a1a8-d10dcd0fcf1b',

'plan_queue_mode': {'loop': False, 'ignore_failures': False},
'task_results_uid': '14f0a382-404d-4d53-884e-b2a442c36838',

'lock_info_uid': 'a8aff45c-73ad-4ccb-9636-84a81808bb9b',
'lock': {'environment': False, 'queue': False}}

Plan Queue and Plan History

• Editable plan queue:

• Queue items are plans and instructions. Only one instruction ('queue_stop') currently exists.

• Queue can be modified at any time (open/closed environment, plan/function/script is executed, etc.)

• Queue is stored in Redis and persists between QS restarts.

• Each queue item is assigned a unique UID.

• Once queue execution is started, QS is executing the plans one by one until all the plans are completed, one of
the plans fails or is stopped/aborted/halted or the queue is stopped ('queue_stop' API).

• If the 'queue_stop' request is pending, the currently running plan runs to completion. The request can be
cancelled until the queue is stopped.

• Use of the queue is optional. Plans can be submitted by the client one by one using 'queue_item_execute' API.

• Plan history:
• Contains information on all executed plans. The information includes plan parameters and execution results.

• Plans retain their original 'item_uid'.

• The history is not mutable, but it can be cleared at any time.

11

API for Controlling the Queue

12

queue_item_add_batch

queue_item_remove_batch

queue_item_move_batch

Batch operations (atomic)

queue_item_get

queue_item_add

queue_item_update

queue_item_remove

queue_item_move

Operations on a single item

queue_start

queue_stop

queue_stop_cancel

queue_autostart

Queue execution

queue_get

queue_clear

Operations on all elements

Closer look at 'queue_item_add'
Parameters:

• item: dict - plan parameters.

• user_group: str – name of the existing user group (e.g. 'primary').

• user: str – user name (arbitrary string).

• pos: int, 'front', 'back' (optional) - positive or negative int or a string.

• before_uid, after_uid: str (optional) - insert before or after an item with the given UID.

• lock_key: str (optional) - perform operation with the locked queue (if key is known).

13

{

 "method": "queue_item_add",

 "params": {

 "item": {"name": "count", "args": [["det1", "det2"]], "kwargs": {"num": 5, "delay": 1}, "item_type": "plan"},

 "pos": "front",

 "user": "Sample User",

 "user_group": "primary",

 },

}

Example

Executing Plans

• 'queue-item-execute' API returns
immediately. Other API could be called while
the plan is running.

• Plan execution starts immediately,
otherwise the API call fails ('success': False).

• Relevant error message is returned ('msg')
in case of failure.

• 'item_uid' is assigned automatically.

• The information on completed plan is added
to the plan history. If the plan fails, the result
contains the error message ('msg') and full
traceback.

14

$ qserver queue execute plan '{"name": "count", "args":

[["det1", "det2"]], "kwargs": {"num": 10, "delay": 1}}'​

13:17:29 - MESSAGE:

{'success': True,​

'msg': '',​

'qsize': 0,​

'item': {'name': 'count',​

 'args': [['det1', 'det2']],​

 'kwargs': {'num': 10, 'delay': 1},​

 'item_type': 'plan',​

 'user': 'qserver-cli',​

 'user_group': 'primary',​

 'item_uid': '3b5d907a-d954-4682-b311-19e03ded5ef9'}}​

$ qserver history get

13:21:23 - MESSAGE:

{'success': True,

'msg': '',

'items': [{'name': 'count',

 'args': [['det1', 'det2']],

 'kwargs': {'num': 10, 'delay': 1},

 'item_type': 'plan',

 'user': 'qserver-cli',

 'user_group': 'primary',

 'item_uid': '3b5d907a-d954-4682-b311-19e03ded5ef9',

 'result': {'exit_status': 'completed',

 'run_uids': ['bbac7fa3-7bae-46f4-8284-8fbf843c7885'],

 'scan_ids': [1],

 'time_start': 1701713849.0494175,

 'time_stop': 1701713859.3225343,

 'msg': '',

 'traceback': ''}}],

'plan_history_uid': 'a9ab3aab-21e5-4253-8c98-5cbea873a223'}

15

Additional Features

Execution of Functions
'function_execute' API is very similar to 'queue_item_execute' API. Use cases: custom
monitoring features for the environment or a plan; communication between running plan and a client
application.

• The API parameters include function name and function args and kwargs.

• The function must exist in the worker namespace (it is typically defined in the startup code).

• Functions can be executed in the foreground thread (blocks execution of plans and other
foreground task) or background thread.

• Background tasks can be started while a plan is running. The total number of background
tasks is reported as part of status ('worker_background_tasks').

• 'function_execute' returns immediately. If API call is successful, the function execution is
started in the worker.

• The returned 'task_uid' can be used to check the task status ('task_status' API) and download
the result when execution is completed ('task_result' API).

16

Execution of Scripts

'script_upload' API. Use cases: add objects (e.g. plans or functions) to the environment, modify
the existing objects (e.g. edited plans).

• The API accepts a Python script as text.

• The script is uploaded to RE Worker and executed in the environment. The script is handled the
same as a startup script.

• The scripts can be executed in the foreground thread (blocks execution of plans and other
foreground task) or background thread.

• 'script_upload' returns immediately. If API call is successful, the script execution is started in
the worker.

• The returned 'task_uid' can be used to check the task status ('task_status' API) and
download the result when execution is completed ('task_result' API).

• The result contains the full traceback if script execution failed with an exception.

17

User Group Permissions

• The feature allows to set filters for the names of plans, devices and functions. The filters are
applied to plans and devices from the worker namespace to generate lists of allowed plans and
devices.

• The filters could be tuned to restrict access to plans and devices for different user groups, e.g.
beamline scientists and users.

• This feature is designed to reduce clutter and prevent operator errors, not as a security feature.
It could be used for as part of access control in conjunction with other security features.

• The filters are based on lists of names and/or regular expressions.

• Initially, the filters are loaded from disk (‘user_group_permissions.yaml’ file). The permissions
could be modified by the client using ‘permissions_get’ and ‘permissions_set' API (e.g. if
permissions are managed by a web server).

• The ‘permissions_reload’ API restores the original permissions loaded from disk.

18

Example: ‘user_group_permissions.yaml’

19

user_groups:

 root: # Defines the rules for preliminary filtering of plan/device/function names for all groups.
 allowed_plans:

 - null # Allow all

 forbidden_plans:
 - ":^_" # All plans with names starting with '_'

 allowed_devices:
 - null # Allow all

 forbidden_devices

 - ":^_:?.*" # All devices with names starting with '_'
 allowed_functions:

 - null # Allow all
 forbidden_functions:

 - ":^_" # All functions with names starting with '_'

 primary: # Default group. The group can be renamed or other groups may be created.
 allowed_plans

 - ":.*" # Different way to allow all plans.
 forbidden_plans

 - null # Nothing is forbidden

 allowed_devices
 - ":?.*:depth=5" # Allow all device and subdevices. Maximum deepth for subdevices is 5.

 forbidden_devices
 - null # Nothing is forbidden

 allowed_functions

 - "function_sleep" # Explicitly listed name
 - ":^func_for_test"

20

Queue Server API

RE Manager API (0MQ)

• RE Manager creates two 0MQ sockets: control socket (REQ/REP) and data socket
(PUB/SUB). The control socket is used by clients to send requests. Clients may also
subscribe to the data socket to receive streamed console output.

• Control socket supports encryption (CurveZMQ).

• API are designed to process the request and send the response to client almost
immediately. Quick operations (e.g. ‘status’ or ‘queue_item_add’) are executed before the
response is sent. For longer operations (e.g. ‘environment_open’ and ‘queue_start’), the
response is sent once the operation is initiated. Clients are expected to monitor RE Manager
status to wait until long operation is completed.

• Block queue operations ‘queue_item_add_batch’, ‘queue_item_remove_batch’ and
‘queue_item_move_batch’ are atomic: the queue remains unchanged if the operation fails for
any item in the batch and batch processing can not be interrupted by any other queue
operation before it completes.

• Detailed documentation of API is available: https://blueskyproject.io/bluesky-
queueserver/re_manager_api.html

21

https://blueskyproject.io/bluesky-queueserver/re_manager_api.html
https://blueskyproject.io/bluesky-queueserver/re_manager_api.html

API Groups

22

status

config_get

re_runs

plans_allowed

devices_allowed

plans_existing

devices_existing

history_get

history_set

environment_open

environment_close

environment_destroy

environment_update

queue_get

queue_item_add

queue_item_update

queue_item_get

queue_item_remove

queue_item_move

queue_item_execute

queue_clear

queue_item_add_batch

queue_item_remove_batch

queue_item_move_batch

queue_start

queue_stop

queue_stop_cancel

queue_autostart

queue_mode_set

re_pause

re_resume

re_stop

re_abort

re_halt

script_upload

function_execute

task_status

task_result

lock

lock_info

unlock

kernel_interrupt

permissions_get

permissions_set

permissions_reload

HTTP Server API (REST)
• In the current implementation, the HTTP Server is forwarding all requests to RE Manager,

so the basic set of API is identical.

• The HTTP Server is using Queue Server API package for 0MQ communication that performs
caching of status, queue, history etc.).

• HTTP Server provides additional API for authentication and access control.

23

environment_open

environment_close

queue_item_add

queue_start

/environment/open

/environment/close

/queue/item/add

/queue/start

RE Manager API REST API

Queue Server API Package

Issues with native RE Manager API:

• Writing each API request as JSON may be inconvenient and prone to errors.

• Deeper understanding of RE Manager internals is necessary to write efficient code.

• Two versions of code need to be maintained if an application need to communicate with RE
Manager using both 0MQ and REST API.

Problem solved by the API from ‘bluesky-queueserver-api’ package:

• Python library: access to all API by calling class methods, the parameters are passed as
method parameters.

• The same code can be used to communicate over 0MQ and REST API.

• The library contains synchronous and asyncio versions API.

• The API class stores global settings (configuration) and temporary data. Data downloaded
from RE Manager (such as status, queue, lists of allowed plans and devices) is cached
locally and reloaded only if expired or changed at the server.

• Additional API for higher level functionality (e.g. ‘wait_for_...’ API).

24

Example: Queue Server API

25

from bluesky_queueserver_api.zmq import REManagerAPI
from bluesky_queueserver_api.http import REManagerAPI
RM = REManagerAPI() # Parameters depend on configuration
RM.environment_open()
RM.wait_for_idle()

from bluesky_queueserver_api.aio.zmq import REManagerAPI
from bluesky_queueserver_api.aio.http import REManagerAPI
RM = REManagerAPI() # Parameters depend on configuration

await RM.environment_open()
await RM.wait_for_idle()

Queue Server API: ‘item_add’

• ‘item_add’ accepts plan parameters as JSON (dictionary) or as an instance of BPlan or
BInst helper classes.

• There are three helper classes: BPlan, BInst and BFunc. The classes accept plan,
instruction or function parameters in natural form and represent them as a dictionary.

• The first parameter is the name of a plan, instruction or function.

26

try:

 # Add a plan to the back of the queue

 response = RM.item_add(BPlan(“count”, [“det1”], num=10, delay=1))

 item_uid = response[“item”][“item_uid”]

 # Insert another plan before the previously added plan

 RM.item_add(BPlan(“count”, [“det1”] , num=10, delay=1), before_uid=item_uid)

except RM.RequestFailedError as ex:

 # < process the error >

Queue Server API:
‘wait_for_...’

• ‘wait_for_...’ API are monitoring status and returns if predefined condition is met. If
the condition is not met within specified timeout period, ‘WaitTimeoutError’ is raised.

• The functions accept additional ‘monitor’ parameter, which can be used to monitor
wait time or cancel the wait by calling ‘monitor.cancel()’ (exception ‘WaitCancelError’ is
raised.

• Multiple ‘wait_for_...’ functions running in different threads are sharing status
data. No additional requests are sent to the server.

27

Available ‘wait_for_...’ functions to support common tasks:

• ‘wait_for_idle’

• ‘wait_for_idle_or_paused’ (waiting for the queue or plan to complete)

• ‘wait_for_idle_or_running’ (opening environment with autostart mode enabled)

The function ‘wait_for_condition’ allows to implement custom wait functions.

28

def condition(status):

 return status[“manager_state”] == “idle”

RM.wait_for_condition(condition, timeout=60)

29

Deployment and
Maintenance

Use of Redis

• RE Manager relies on Redis for persistent storage of temporary data. The data includes
contents of the queue, history and some internal parameters.

• Queue Server communicates with Redis during each queue operation, so the access is
expected to be fast and reliable. It is recommended that Redis is installed on the same
machine as the Queue Server.

• Queue Server automatically creates all necessary Redis variables. It successfully start with
‘empty’ Redis.

• Queue Server can be directly installed on the host (e.g. from PyPI) or deployed in a
container.

30

RE ManagerRedis

CLI Tools

The following CLI tools are installed as part of ‘bluesky-queueserver’ package:

• start-re-manager - start RE Manager.

• qserver - communicate with RE Manager over 0MQ.

• qserver-list-plans-devices - generate list of existing plans and devices, validate startup code.

• qserver-zmq-keys - generate key pair for encryption of 0MQ control channel.

• qserver-console-monitor - simple monitor of RE Manager console output.

• qserver-clear-lock - unlock RE Manager if the lock key is lost.

• qserver-console - start Jupyter Console connected to IPython kernel running in the worker.

• qserver-qtconsole - start Jupyter Qt Console connected to IPython kernel running in the worker.

31

Starting the Queue Server

Developers and small users may want to start RE Manager in the terminal. Following examples
illustrate how to use the most common options.

• QS (RE Manager) is started by running ‘start-re-manager’. By default, RE Manager is started in
demo mode and uses startup code with simulated plans and devices distributed with the
package.

• Display the available CLI options:

 start-re-manager -h

• Start in IPython kernel mode:

 start-re-manager –use-ipython-kernel=ON

• Point to a directory with startup code:

 start-re-manager –startup-dir=~/.ipython/profile_collection/startup

• Enable streaming of console output:

 start-re-manager –zmq-publish-console=ON

32

Running RE Manager as a Service

Instructions on how to run a Queue Server are included in documentation:
https://blueskyproject.io/bluesky-queueserver/using_queue_server.html#running-re-manager-as-a-service.

33

Service configuration file:

Script for starting RE Manager:

https://blueskyproject.io/bluesky-queueserver/using_queue_server.html

RE Manager Configuration
• Configuration options: environment variables, configuration file (YML) or CLI parameters.

• Settings from config file override environment variables, CLI parameters override all other settings.

• RE Manager attempts to load the config file if the location is specified using CLI parameter or
environment variable:

start-re-manager –config=<path-to-config>
QSERVER_CONFIG=<path-to-config> start-re-manager

34

config.yml

network:

 zmq_control_addr: tcp://*:60615

 zmq_info_addr: tcp://*:60625

 zmq_publish_console: true,

 redis_addr: localhost:6379

startup:

 keep_re: true,

 startup_dir: ~/.ipython/profile_collection/startup

 existing_plans_and_devices_path: ~/.ipython/profile_collection/startup,

 user_group_permissions_path: ~/.ipython/profile_collection/startup

 device_max_depth: 3,

operation:

 print_console_output: true,

 console_logging_level: NORMAL

 update_existing_plans_and_devices: ENVIRONMENT_OPEN,

 user_group_permissions_reload: ON_REQUEST

 emergency_lock_key: some_lock_key

35

Questions?

Starting Queue Server for the Demo

• Activate the environment with installed Queue Server packages (e.g. bs-qserver):

$ conda activate bs-qserver

• Start the Run Engine Manager, enable IPython kernel mode and publishing of console output:

$ start-re-manager –use-ipython-kernel=ON –zmq-publish-console=ON

• Open another terminal and activate the environment. Now you can explore different API requests using
qserver CLI application to send requests, for example:

$ qserver environment open
$ qserver queue add plan '{"name": "count", "args": [["det1", "det2"]], "kwargs": {"num": 10, "delay": 1}}'
$ qserver queue start
$ qserver environment close

36

Starting queue-monitor GUI Application

• Open another terminal and activate the environment. Start queue-monitor application:

$ queue-monitor

• Click 'Connect' button to start communication with RE Manager.

37

	Slide 1: Bluesky Queue Server
	Slide 2: Purpose of Queue Server
	Slide 3: Components of the QS Stack
	Slide 4: Installation of QS (for evaluation)
	Slide 5: System Configurations
	Slide 6: Examples of QS Clients
	Slide 7: RE Manager (Execution Engine)
	Slide 8: Sources of Startup Code
	Slide 9: IPython Kernel
	Slide 10: Monitoring the Status of RE Manager
	Slide 11: Plan Queue and Plan History
	Slide 12: API for Controlling the Queue
	Slide 13: Closer look at 'queue_item_add'
	Slide 14: Executing Plans
	Slide 15: Additional Features
	Slide 16: Execution of Functions
	Slide 17: Execution of Scripts
	Slide 18: User Group Permissions
	Slide 19: Example: ‘user_group_permissions.yaml’
	Slide 20: Queue Server API
	Slide 21: RE Manager API (0MQ)
	Slide 22: API Groups
	Slide 23: HTTP Server API (REST)
	Slide 24: Queue Server API Package
	Slide 25: Example: Queue Server API
	Slide 26: Queue Server API: ‘item_add’
	Slide 27: Queue Server API: ‘wait_for_...’
	Slide 28
	Slide 29: Deployment and Maintenance
	Slide 30: Use of Redis
	Slide 31: CLI Tools
	Slide 32: Starting the Queue Server
	Slide 33: Running RE Manager as a Service
	Slide 34: RE Manager Configuration
	Slide 35: Questions?
	Slide 36: Starting Queue Server for the Demo
	Slide 37: Starting queue-monitor GUI Application

