

Update: Transition to Phoebus at the Karlsruhe Institute of Technology

Edmund Blomley & Sebastian Marsching

Outline

KIT Accelerators & Environment

Edmund Blomley - Transition to Phoebus at the Karlsruhe Institute of Technology

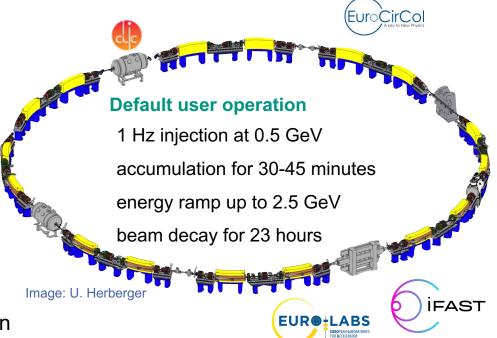
- Backend Infrastructure
- User Space
- Panel Migration
- Summary & Outlook

Location: Karlsruhe – Germany

Karlsruhe Research Accelerator (KARA)

KIT synchrotron light source & accelerator test facility

Edmund Blomley - Transition to Phoebus at the Karlsruhe Institute of Technology

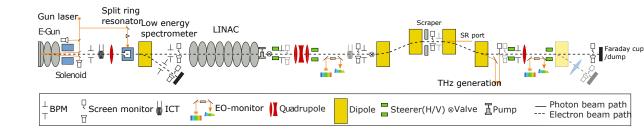

until 2015 known as "ANKA"

Circumference: 110.4 m.

Ramped storage ring: 0.5 - 2.5 GeV

■ Mostly "stable" IOCs & panels

- One week per month:
 - Beam physics experiments and tests
 - Very variable in energy, filing pattern, bunch current and operational condition



Far-Infrared Linac and Test Experiment

- 50-90 MeV linear electron accelerator
- Goal: Ultra short electron pulses (1-300 fs), THz experiments
- Panels and IOCs much more fluid
 - Overlap in panels, IOC support and general controls infrastructure

Edmund Blomley - Transition to Phoebus at the Karlsruhe Institute of Technology

But separate network, building, operators and users

Very Large Acceptance compact Storage Ring (VLA-cSR)



- New storage ring in TDR/FDR phase
- Circumference: 43.2 m (6.9 MHz revolution frequency)
- Installation and commissioning 2026-2027
- Store ultra-short bunches (~ 10 fs 1 ps)
 - from FLUTE
 - from LPA(s)

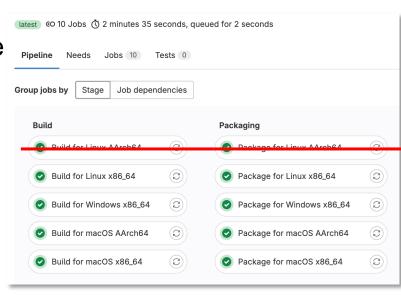
■ No panels or IOCs yet

- Extension to FLUTE controls
- Opportunity to rework/redesign panels

Controls Environment

- Still 99% Channel Access
- IOCs mostly on virtual machines
- GUI: Control System Studio

- Ubuntu LTS for all servers and terminals
 - About to migrate to 24.04
- Code repository with lots of Cl usage: GitLab
 - IOCs, EPICS distribution, software packaging, ...
- IT orchestration: Salt Project
 - (comparable to Ansible)


Backend Infrastructure

Building Phoebus

- Try to be as close to upstream as possible
- GitLab CI to build for all platforms
 - Using only Linux Docker images
 - (Removed Linux ARM build due to issues with JavaFX)
- Modifications made to upstream
 - EPICS Jackie PV source (alternative to JCA / CAJ)
 - JSON / HTTP based archive reader.
 - Improvements to Elasticsearch and Kafka connection code

Edmund Blomley - Transition to Phoebus at the Karlsruhe Institute of Technology

Alarm Server & Logger

- Each build separately to its own Docker image
- Alarm server container running in "host" network mode
- Current issue for alarm server: experiencing long load times during channel import

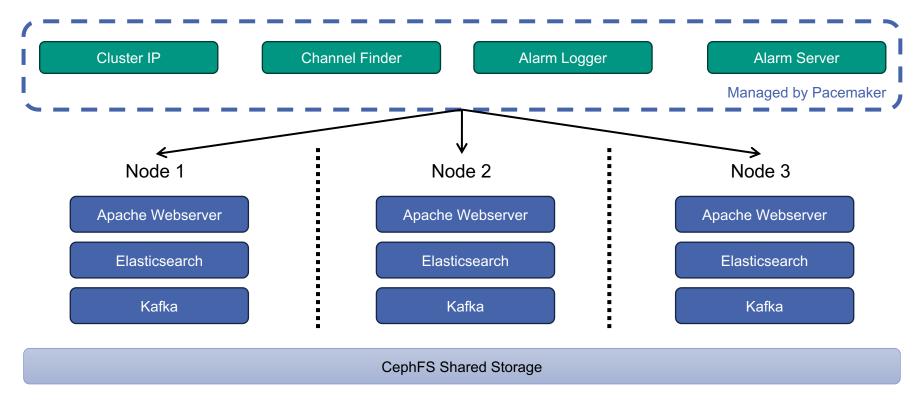
Edmund Blomley - Transition to Phoebus at the Karlsruhe Institute of Technology

Using Elasticsearch and Kafka HA clusters (changes to connection code have been merged upstream)

Channel Finder

- Use existing PV export feature to feed channel finder server
 - Was used so far for PV bash completion
 - No recast modules in IOCs
- Might change at a later point of time to replace custom PV export
- Improvements to Elasticsearch connection code:
 - Allow specifying multiple servers (HA cluster)
 - Allow use of HTTPS
 - Allow authentication

Phoebus Server Cluster



- Manage HA services via Pacemaker
- Node setup via Salt
- File storage via CephFS cluster
- Elasticsearch and Kafka running as a three-node HA cluster
- Clients download Phoebus client, configuration, and panels from web server using a HA IP address.

12

Phoebus Server Cluster

13

User Space

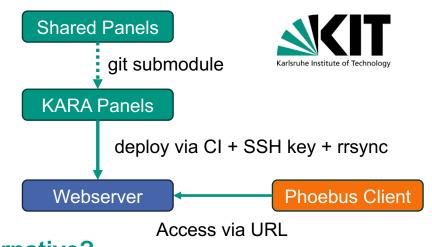
Edmund Blomley - Transition to Phoebus at the Karlsruhe Institute of Technology

14

Phoebus Distribution

Download the Phoebus launcher version

Here, you can download the newest version of the Phoebus launcher. You have to down


- Linux (x86_64): phoebus-launcher-linux-x64-0.1.13.tar.gz
- macOS (Apple Silicon): phoebus-launcher-macosx-aarch64-0.1.13.tar.gz
- macOS (Intel): phoebus-launcher-macosx-x64-0.1.13.tar.gz
- Windows (x86_64): phoebus-launcher-windows-x64-0.1.13.zip

- Download and installation via webserver
 - phoebus.kara.ibpt.kit.edu
 - Based on client network decides for office or accelerator version
- Custom launcher
 - Updates Phoebus version and configuration settings automatically
 - settings.ini & kafka.properties
- Provides environments
 - Choose from stored mementos (layouts)

Panel Distribution

- Panels are stored in GitLab
 - One project per accelerator
 - CI pipeline deploys panels to webserver
- Shared project
 - EPICS modules (areaDetector)
 - Common "resource" panels
 - alternative? IOCs used across both accelerators

- By default, panels (and mementos) are accessed via the webserver
- Path to (local) panels can be provided to launcher
 - Mostly for panel development

Panel Migration

- Phoebus can open .opi files and migrate to .bob files
 - AdvancedConvertor for mass migration
- ~10 years of CSS panels across two accelerators
 - Created and maintained by different groups
- Decided for "manual" migration approach
 - Includes re-structuring and clean-up of old panels
 - Re-align style and behaviour for both accelerators
 - → Much slower migration, but hopefully worth the effort

Summary

Alarm Server

Alarm Logger

Phoebus Distribution

Channel Finder

Webserver

clog

PVInfo

- High availability: Phoebus backend services with docker in cluster setup
- Simple end-user interface
 - Only needs to download one file once
 - Self-configurating & automatically updating
 - Remote panels
- Use "opportunity" to re-work/structure long history of panel development
- Next steps: new electronic logbook & PVInfo