Zero to hero: bootstrapping
control system development
at a new facility

Jure Varlec

Senior Developer / Tech Lead ‘ COSYL . B
Advancing humanity. Engineering remarkable.

jure.varlec@cosylab.com



€ CcosYLAB

We adapt to your EPICS
environment ...

... but that's not always possible.




€ CcosYLAB

Sometimes, there is no existing EPICS environment

A brand-new facility, or a full upgrade of an
existing one.

No EPICS build and deployment tools.

No controls team, or no EPICS experience.

No controls or device network.

No git repositories.

In time, these will all be set up. But the facility
can't afford to wait until then!




€ CcosYLAB

AIms Means

Vanilla EPICS build system.

* Mostly standard module structure.

Smooth transition from nothing to full
infrastructure.

Easy onboarding of Cosylab developers. « Everyone knows this.

* Managing variable workload of long projects.

Heavy reliance on git describe and tags.

* Also helps with facility staff training. * To discern between released versions and

development versions.

Clear version and release management.

» Early deployment will be running a mixture of Containers for development and deployment.

development versions.

Testing with the deployment environment.

High assurance that software working in

development will also work when deployed. * Support deployment without containers.

e There are cases when they don't make sense.



A big giant ball of tar

* The main deliverable is a single tarball:
« Source code
 Documentation

* Build scripts

* Versioned using git describe.

» Additionally, all custom modules are
themselves versioned this way.

* No semantic versioning, release notes contain
everything staff needs to know.

» Contains entire git repos of modules.
» Everything is delivered, no bus factor.

» Straightforward to transition to git later on.

€ CcosYLAB

epics-environment-v4-14-gdb9df8c.tar.gz

base
modules

asyn

autosave

CONFIG SITE.local
L — RELEASE.local
build.sh
Containerfile
README . md

RELEASE _NOTES.md



€ CcosYLAB

Build results

e Containerfile builds a development image epics-environment-v4-14-gdb9df8c.tar.gz

RELEASE_NOTES.md

and a deployment image. | base
« RELEASE.local and build.sh are generated. [ modules
asyn
* CONFIG SITE.local setsinstall locations for Y
documentation and GUIs. autosave
/opt/<facility> CONFIG_SITE.local
— epics L — RELEASE.local
||: base —— build.sh
modules — Containerfile
— modulerocs  README . md
— eng_gui L
L— plc_code



€ CcosYLAB

Structure of a module

« Support library with everything important MyFancyModule
- Databases -- contigure
-- MyFancyModuleSup

» Support code bb
* Engineering GUIs -- SpPC
* Documentation -- doc
« PLC code -- gul
« iocsh scripts -- plc

| " -- iocsh

» Sample app: developer's tool -~ MyFancyModuleSampleApp

 Docs, GUIs, and PLC code are maintained T -- src
together with EPICS code. " -- iocBoot

* Installed using FILE_TYPE mechanism. -- locMyFancyModuleSample



Deployment

GenericIoc: one app linking (nearly) all modules.

|OC configuration: a directory with startup files. SampleIocConfig

« No compiling to instantiate an 10C. — metadata.env

 Amenable to templating.

Starting an IOC from the config directory:
« iocRunner Genericloc

e podman run <opts> <image> iocRunner GenericIloc

main.cmd

L— overrides.db

iocRunner sets up the environment and things common to all IOCs.

|OCs managed by systemd and procServ.

€ CcosYLAB

iocshLoad("$(MYFANCYMODULE)/iocsh/main.cmd", "<MACROS>")
dbLoadRecords("./overrides.db", "<MACROS>")




€ CcosYLAB

summary

Developing a control system from nothing to everything is an exercise in change management.
* Things should start simple so as not to overwhelm facility staff.

» As available infrastructure grows, processes need to adapt.

Start by delivering tarballs, transition to git repositories.

Containers allows running IOCs manually in the beginning, transitioning to service management.

Developing EPICS code, PLC code, GUIs, and documentation in the same repository reduces
headaches considerably.

Continuous integration allows using the same artifacts for testing and deployment.

* Run ClI at Cosylab first, set it up at the facility later.

Release management should be such that releases are just a formality.



€ CcosyLAB

Advancing humanity. Engineering remarkable.

Thank you.

Jure Varlec

jure.varlec@cosylab.com

www.cosylab.com

10



	Slide 1: Zero to hero: bootstrapping control system development at a new facility
	Slide 2: We adapt to your EPICS environment …
	Slide 3: Sometimes, there is no existing EPICS environment
	Slide 4: Aims
	Slide 5: A big giant ball of tar
	Slide 6: Build results
	Slide 7: Structure of a module
	Slide 8: Deployment
	Slide 9: Summary
	Slide 10

