
1

Zero to hero: bootstrapping
control system development
at a new facility
Jure Varlec

Senior Developer / Tech Lead

jure.varlec@cosylab.com

2

We adapt to your EPICS
environment …
… but that's not always possible.

3

Sometimes, there is no existing EPICS environment

• A brand-new facility, or a full upgrade of an
existing one.

• No EPICS build and deployment tools.

• No controls team, or no EPICS experience.

• No controls or device network.

• No git repositories.

• …

In time, these will all be set up. But the facility
can't afford to wait until then!

4

Aims

• Smooth transition from nothing to full
infrastructure.

• Easy onboarding of Cosylab developers.

• Managing variable workload of long projects.

• Also helps with facility staff training.

• Clear version and release management.

• Early deployment will be running a mixture of
development versions.

• High assurance that software working in
development will also work when deployed.

Means

• Vanilla EPICS build system.

• Mostly standard module structure.

• Everyone knows this.

• Heavy reliance on git describe and tags.

• To discern between released versions and
development versions.

• Containers for development and deployment.

• Testing with the deployment environment.

• Support deployment without containers.

• There are cases when they don’t make sense.

5

A big giant ball of tar

• The main deliverable is a single tarball:

• Source code

• Documentation

• Build scripts

• Versioned using git describe.

• Additionally, all custom modules are
themselves versioned this way.

• No semantic versioning, release notes contain
everything staff needs to know.

• Contains entire git repos of modules.

• Everything is delivered, no bus factor.

• Straightforward to transition to git later on.

epics-environment-v4-14-gdb9df8c.tar.gz

├── base

├── modules

│ ├── asyn

│ ├── autosave

│ ├── …

│ ├── CONFIG_SITE.local

│ └── RELEASE.local

├── build.sh

├── Containerfile

├── README.md

└── RELEASE_NOTES.md

6

Build results

• Containerfile builds a development image
and a deployment image.

• RELEASE.local and build.sh are generated.

• CONFIG_SITE.local sets install locations for
documentation and GUIs.

epics-environment-v4-14-gdb9df8c.tar.gz

├── base

├── modules

│ ├── asyn

│ ├── autosave

│ ├── …

│ ├── CONFIG_SITE.local

│ └── RELEASE.local

├── build.sh

├── Containerfile

├── README.md

└── RELEASE_NOTES.md

/opt/<facility>

├── epics

│ ├── base

│ └── modules

├── module_docs

├── eng_gui

└── plc_code

7

Structure of a module

• Support library with everything important

• Databases

• Support code

• Engineering GUIs

• Documentation

• PLC code

• iocsh scripts

• Sample app: developer's tool

• Docs, GUIs, and PLC code are maintained
together with EPICS code.

• Installed using FILE_TYPE mechanism.

MyFancyModule

|-- configure

|-- MyFancyModuleSup

| |-- Db

| |-- src

| |-- doc

| |-- gui

| |-- plc

| `-- iocsh

|-- MyFancyModuleSampleApp

| `-- src

`-- iocBoot

`-- iocMyFancyModuleSample

8

Deployment

• GenericIoc: one app linking (nearly) all modules.

• IOC configuration: a directory with startup files.
• No compiling to instantiate an IOC.

• Amenable to templating.

• Starting an IOC from the config directory:
• iocRunner GenericIoc

• podman run <opts> <image> iocRunner GenericIoc

• iocRunner sets up the environment and things common to all IOCs.

• IOCs managed by systemd and procServ.

iocshLoad("$(MYFANCYMODULE)/iocsh/main.cmd", "<MACROS>")

dbLoadRecords("./overrides.db", "<MACROS>")

SampleIocConfig

├── metadata.env

├── main.cmd

└── overrides.db

9

Summary

• Developing a control system from nothing to everything is an exercise in change management.

• Things should start simple so as not to overwhelm facility staff.

• As available infrastructure grows, processes need to adapt.

• Start by delivering tarballs, transition to git repositories.

• Containers allows running IOCs manually in the beginning, transitioning to service management.

• Developing EPICS code, PLC code, GUIs, and documentation in the same repository reduces
headaches considerably.

• Continuous integration allows using the same artifacts for testing and deployment.

• Run CI at Cosylab first, set it up at the facility later.

• Release management should be such that releases are just a formality.

10

Thank you.

www.cosylab.com

Jure Varlec

jure.varlec@cosylab.com

	Slide 1: Zero to hero: bootstrapping control system development at a new facility
	Slide 2: We adapt to your EPICS environment …
	Slide 3: Sometimes, there is no existing EPICS environment
	Slide 4: Aims
	Slide 5: A big giant ball of tar
	Slide 6: Build results
	Slide 7: Structure of a module
	Slide 8: Deployment
	Slide 9: Summary
	Slide 10

