

Synchronous Data Service (SDS) EPICS module based on PVXS and Normative Types for ESS

Fall 2024 EPICS Collaboration Meeting – ORNL, Oak Ridge TN, USA

João Paulo Martins Juan F. Esteban Muller Integrated Control Systems Division (ICS)

2024-09-23

- 2 High-speed Data Acquisition Systems at ESS
- 3 SDS– Synchronous Data Service
- 4 SDS EPICS Module
- 5 SDS Collector
- 6 Conclusions

European Spallation Source (ESS) Status

- ESS in a nutshell:
- Linear Proton Accelerator designed for a beam average power of 5MW;
- Rotating tungsten target station to produce neutrons;
- (up to) 22 neutron instruments (beamlines);
- Current Status:
- Installation and conditioning of the latest cryomodules;
- Beam on dump scheduled to January/25;
- Beam on target in September/25;
- User program to start in 2027;

ess

Control System Hardware Strategy defined by ICS

High-speed Data Acquisition Systems at ESS

2

Overview of the Timing Structure of the ESS Linac

Overview of the MTCA applications

- MTCA is used in multiple systems:
- LLRF, RFLPS
- BPM, BCM, BLMs
- other PBI systems (FC, WS, EMUs, ...)
- Fast Beam Interlock System
- Timing Distribution (MRF)
- MRF MTCA Event Master
- MRF MTCA Event Receiver

Basic workflow of a MTCA data acquisition IOC

- Timing System events arrive to the EVR which then generates electrical triggers on the MTCA backplane
- FPGAs in the AMCs receive triggers and take actions:
- Start acquisition on ADCs
- Real-time tasks
- FPGA interrupts CPU via PCIe
- Worker thread on IOC device support reads data from FPGA

Basic workflow of a MTCA data acquisition IOC

- All readout parameters are extracted from the FPGA and published to EPICS records (I/O Intr)
- Array datasets are published as EPICS waveform/aai records (I/O Intr)
- Acquisition parameters are defined per system:
- Sampling rate
- Acquisition length (number of points)
- Decimation
- Other modes also exist (circular buffer)
- Update rate: 1 Hz 14 Hz

Archiving the waveforms

- DAQ waveforms are valuable data for many stakeholders
- We lack a standard way to store the datasets, besides the Archiver Appliance
- Some systems implement a feature to save the data locally (NDPluginHDF5 or raw binary files)
- Waveforms are being monitored by OPIs and in the Archiver Appliance
- Potential risk to overload the network
- Indiscriminate use of permanent storage
- Cumbersome to extract and correlate data

3 Synchronous Data Service (SDS)

Synchronous Data Service (SDS) Overview

- Given that ESS is a pulsed machine, SDS aims to collect and store data indexed by an unique cycle ID instead of the time series fashion
- It is NOT a new Archiver but rather a complementary service
- The main objective is to facilitate the post-analysis and correlation of data from different accelerator systems
- An opportunity to implement a global post-mortem and on-demand data collection system

Synchronous Data Service (SDS)

ess

General Architecture

Synchronous Data Service (SDS)

First attempt to implement at the IOC level

- Since EPICS Base release 7.0.6 every record has the UTAG field (64 bits)
- UTAG is copied together with TIME using the TSEL field
- UTAG value is mapped to userTag field of a Normative Types PV
- Contribution to mrfioc2 to enable a custom UTAG field on the event counter records
- Event counters are used as timestamp source
- Since release 2.5.0

record(calc, "\$(EN)Cnt-I") {
 field(DESC, "TS and UTAG source")
 #field(SDIS, "\$(EN)-SP")
 #field(DISV, "0")
 field(CALC, "A+1")
 field(INPA, "\$(EN)Cnt-I NPP")
 \$(SFTSEN=)field(TSEL, "\$(EN)-SP.TIME")

> dbgf LabS-ICS:Ctrl-EVR-411:EvtF14HzCnt-I.UTAG DBF_UINT64: 15336819666 = 0x392254bd2

Synchronous Data Service (SDS)

First attempt to implement at the IOC level

Issues:

- UTAG is 64-bit but userTag is 32-bit
- TSEL mechanism does not copy UTAG when link is between two separate IOCs

This idea is not out of the table yet:

 We will use the newer versions of mrfioc2 with UTAG on event counters

Another approach: use QSRV Group PV

```
#- Cycle ID params
record(int64in, "$(P)$(R=)#SDSMDataCycleIdIn") {
    field(DESC, "IDCycle")
    field(INP, {pva:{pv:"$(PEVR)IdCycle",proc:false,time:true}})
    field(TSE, "-2")
    info(Q:group, {
        "$(P)$(R=)SDSMetadata":{
            "value":{+type:"plain", +channel:"VAL"},
            "cycleId":{+type:"meta", +channel:"VAL"},
            "cycleId.value":{+type:"plain", +channel:"VAL"},
            "sdsInfo.cycleId":{+type:"plain", +channel:"VAL"},
            }
        })
        field(FLNK, "$(P)$(R=)#SDSMDataSdsEvtInfo")
```

4

Motivation, requirements and constraints

Motivation

- Facilitate the offline analysis and correlation of data from different systems
- Handle array datasets in a sensible way
- Explore the capabilities of EPICS 7 and PVA

Requirements

- Generate PVs at the IOC level that contains data and metadata (cycle ID)
- Accumulate consecutive acquisitions locally and upload to a collector service for post-mortem or on-demand analysis
- Store this data on permanent storage indexed by the cycle ID

Constraints

- Don't overload the network (in fact, try to reduce the traffic)
- Don't modify existing IOCs (as much as possible)

Off-topic – PVXS in production

Down-sampling waveforms

- We have poor control of OPIs monitoring waveforms
- Archiver is also monitoring waveforms
- Huge traffic when running at 14 Hz
- (Partially) tackle the network congestion with down-sampled waveforms at the IOC level
- LTTB Algorithm
- Using asub record with pvxs to create a new PV with down-sampled array and throttled updates

LTTB Downsampling Algorithm Test

2 202 402 602 802 1002 1202 1402 1602 1802 2002 2202 2402 2602 2802 3002 3202 3402 3602 3987

Architecture

Disclaimer: this is still an on-going development!

- We have tried different architectures, we now have an optimal solution
 - EVR and DAQ are separate IOCs but need to exchange information
 - SDS can run as a separate IOC
 - Try not to assume anything, latencies may be higher than expected
 - Consider that everything is asynchronous, despite the timing interruptions
 - Some aspects still need to be better implemented
- Goal: ingest waveforms, match data with metadata, buffer it locally while also making it available to clients as Normative Types PV

Generating the SDS Metadata PV with QSRV Groups

Very straightforward once you understand the info tags

- Processing chain with only one "trigger" field defined
- Defined as NTScaler with "value" equal the Cycle ID
- Copies all metadata from the timing data buffer into custom fields
- Updates at 14Hz even without beam

```
record(calc, "$(P)$(R=)#SDSMDataFetchDBuf") {
   field(DESC, "FWD process chain")
    field(CALC, "A+1")
    field(INPA, "$(P)$(R=)#SDSMDataFetchDBuf NPP")
    field(VAL,
                 "0")
   field(INPB, {pva:{pv:"$(F14HzCnt)",proc:"CPP",time:true}})
    field(TSE, -2)
    info(Q:group, {
        "$(P)$(R=)SDSMetadata":{
           +id:"epics:nt/NTScalar:1.0",
           "": {+type:"meta", +channel:"TIME"},
           "cycleId":{+type:"meta", +channel:"TIME"},
           "sdsInfo":{+type:"meta", +channel:"TIME"},
   })
   field(FLNK, "$(P)$(R=)#SDSMDataBStateIn")
#- Beam State
record(ai, "$(P)$(R=)#SDSMDataBStateIn") {
   field(INP, {pva:{pv:"$(PEVR)BState",proc:false}})
   info(Q:group, {
       "$(P)$(R=)SDSMetadata":{
           "beamInfo.state":{+type:"plain", +channel:"VAL"},
   })
```

```
field(FLNK, "$(P)$(R=)#SDSMDataBDestIn")
```


Generating the SDS Metadata PV with QSRV Groups

ess

LabS-ICS:SC-IOC-411:SDSMetadata Server: 172.30.7.114:5075 Type: epics:nt/NTScalar:1.0 structure record structure _options int queueSize boolean atomic alarm_t alarm int severity int status string message time_t timeStamp long secondsPastEpoch int nanoseconds int userTag

long value

structure beamInfo int curr double dest int energy int len double mode double present double state structure cycleId alarm_t alarm int severity int status string message time_t timeStamp long secondsPastEpoch int nanoseconds int userTaa long value

structure diagnostics alarm_t alarm int severity int status string message time_t timeStamp long secondsPastEpoch int nanoseconds int userTaa double count structure sdsInfo alarm_t alarm int severity int status string message time_t timeStamp long secondsPastEpoch int nanoseconds int userTaa structure buffer int idx int size long cycleId int evtCode double evtcount

2024-09-23 SYNCHRONOUS DEVICE SERVICE AT ES

SDS EPICS Module

pvxs::Value as the standard data container

The **pvxs::value** class objects are used all over the code

- All ring-buffers are of the type std::deque<pvxs::Value>
- All message queues are of the type pvxs::MPMCFIFO<pvxs::Value>

Field names are hardcoded

Ex. "cycleId.value"

```
Value top = TypeDef(TypeCode::Struct, {
    members::Int32("fldname"),
}).create();
top["fldname"] = 1;
fld = top["fldname"];
fld = 2;
```

```
Is analogous to the following pseudo code.
```

```
// pseudo-code
struct anon {
    int32_t fldname=0u;
};
void* top = new anon;
static_cast<anon*>(top)->fldname = 1;
void* fld = &static_cast<anon*>(top)->fldname;
static_cast<int32_t*>(fld) = 2;
```


How to create a custom structure in PVXS

```
pvxs::TypeDef SDSData::build() const {
   using namespace pvxs::members;
   auto time_t(pvxs::nt::TimeStamp{}.build());
   auto alarm_t = {
       Int32("severity"),
       Int32("status"),
       String("message"),
   pvxs::TypeDef def(pvxs::TypeCode::Struct, "epics:nt/NTNDArray:1.0", {
       Union("value", {
                       BoolA("booleanValue"),
                       Int8A("byteValue"),
                       Int16A("shortValue"),
                       Int32A("intValue"),
                       Int64A("longValue"),
                       UInt8A("ubyteValue"),
                      UInt16A("ushortValue"),
                      UInt32A("uintValue"),
                       UInt64A("ulongValue"),
                      Float32A("floatValue"),
                      Float64A("doubleValue"),
       time t.as("timeStamp"),
       Struct("alarm","alarm_t",alarm_t),
       StructA("dimension", "dimension_t", {
           Int32("size"),
           Int32("offset"),
          Int32("fullSize"),
          Int32("binning").
          Bool("reverse"),
       Struct("arrayInfo","arrayInfo_t", {
           Float32("sampling"),
          Int32("size"),
           Int32("decimation")
```

```
Struct("beaminto", "beaminto_t", -
   Struct("sdsInfo", "sdsInfo_t", {
       Int64("cycleId"),
       Float32("evtcount"),
       Int32("evtCode"),
       Struct("buffer", "buffer_t", {
           Int32("size"),
           Int32("idx")}).
           time_t.as("timeStamp"),
           Struct("alarm", "alarm_t", alarm_t)
   Struct("cycleId", "cycleId_t", {
       Int64("value"),
       Struct("alarm", "alarm_t", alarm_t),
       time_t.as("timeStamp")
   Struct("acqEvt", "acqInfo_t", {
       String("name"),
       String("evr"),
       Float32("delay"),
       Int32("code"),
       Struct("alarm", "alarm_t",alarm_t),
       time t.as("timeStamp")
   Struct("diagnostics","diagnostics_t", {
       Int32("uniqueId"),
       // Int32("missedFrames"),
       // Int32("dupCycleId"),
       time_t.as("timeStamp")
return def;
```


The structure of the typical SDS PV (data + metadata)

epics:nt/NTNDArray:1.0 union value boolean[] booleanValue byte[] byteValue short[] shortValue int∏ intValue long[] longValue ubyte[] ubyteValue ushort∏ ushortValue uint[] uintValue ulong[] ulongValue float∏ floatValue double[] doubleValue time_t timeStamp long secondsPastEpoch int nanoseconds int userTag alarm_t alarm int severity int status string message

dimension_t[] dimension

dimension_t int size int offset int fullSize int binning boolean reverse arrayInfo_t arrayInfo float sampling int size int decimation

beamInfo_t beamInfo

float mode float state float present int len int energy int curr float dest sdsInfo_t sdsInfo long cycleId float evtcount int evtCode buffer_t buffer int size int idx time_t timeStamp long secondsPastEpoch int nanoseconds int userTag alarm_t alarm int severity int status string message

The structure of the typical SDS PV (data + metadata)

cycleId_t cycleId long value alarm_t alarm int severity int status string message time_t timeStamp long secondsPastEpoch int nanoseconds int userTag

ing message

acqInfo_t acqEvt string name string evr float delay int code alarm_t alarm int severity int status string message time_t timeStamp long secondsPastEpoch int nanoseconds int userTag diagnostics_t diagnostics int uniqueId time_t timeStamp long secondsPastEpoch int nanoseconds int userTag

Pushing data out to the PVXS PVA server

- sds::pvBuffer objects are created for each data channel
- Holds the circular buffers of pvxs::value
- Holds three (3) pvxs::server::SharedPV
 objects that effectively create new PVs
 directly from C++
- New PV names are derived from original data source PV
- SDS-LiveData
- SDS-PMData
- SDS-DODData

```
m_ArrayDataLivePV = pvxs::server::SharedPV::buildReadonly();
std::string pvname = m_Name + "SDS-LiveData";
pvxs::Value livedatainit = sds::SDSData{}.create().cloneEmpty();
pvxs::ioc::server().addPV(pvname, m_ArrayDataLivePV);
m_ArrayDataLivePV.open(livedatainit);
```

```
m_ArrayDataPMPV = pvxs::server::SharedPV::buildReadonly();
pvname = m_Name + "SDS-PMData";
pvxs::Value pmdatainit = m_ArrayDataLivePV.fetch().cloneEmpty();
pvxs::ioc::server().addPV(pvname, m_ArrayDataPMPV);
m_ArrayDataPMPV.open(pmdatainit);
```

```
m_ArrayDataD0DPV = pvxs::server::SharedPV::buildReadonly();
pvname = m_Name + "SDS-D0DData";
pvxs::Value doddatainit = m_ArrayDataLivePV.fetch().cloneEmpty();
pvxs::ioc::server().addPV(pvname, m_ArrayDataD0DPV);
m_ArrayDataD0DPV.open(doddatainit);
```

Pushing data out to the PVXS PVA server

- SDS-LiveData [pvxs::server::SharedPv]
- Copy of the **pvxs:** : **value** is pushed to SharedPV which triggers subscription updates
- Use with caution!
- SDS-DODData [pvxs::server::Sharedpv]
- Acts upon a timing event arrival (Data-on-Demand event)
- Updates the SharedPV with the circular buffer values with an interval of 1 second
- SDS-PMData [pvxs::server::SharedPV]
- Acts upon a timing event arrival (Post-mortem event)
- Updates the SharedPV with the circular buffer values with an interval of 1 second

41

How to integrate on your IOC?

In the EVR IOC: simply load the database that creates the QSRV Group

Configuration of the SDSMetadata (EVR IOC)

dbLoadRecords("\$(sdsioc_DB)/metadataGroup.template", "P=SDS:, PEVR=EVR:, F14HzCnt=EVR:F14HzCnt-I")

How to integrate on your IOC?

Modes:

	#					
Dependencies:	# SDS Configuration #					
 EPICS Base 	epicsEnvSet("SDSPREFIX", "F00:BAR:SDS") sdsConfigure("\$(SDSPREFIX):","SDS","F00:BAR:SDSMetadata","\$(EVR_NAME)PMortemCnt-I", "\$(EVR_NAME)DoDCnt-I")					
■ pvxs	# #- SDS Waveform Capture #					
Modes:	#— int sdsCreateChannel(const char *pvname, int prebufsize, int postbufsize, const char *sampfreqpv, const char* decimationpv, # const char *evrname, const char *evrpulser, const char *evroutput, const char *evrevtnumpv,					
Inside the DAQ IOC	# const char *evrevtdelaypv, const char *evrevtcntpv)					
 Stand-alone IOC running in the same host 	<pre>epicsEnvSet("EVR","EVR") epicsEnvSet("EVR_PUL","DlyGen-6") epicsEnvSet("EVR_OUT","RX17") epicsEnvSet("EVR_EVTPV","EVR:DlyGen-6-Evt-Trig0-SP") epicsEnvSet("EVR_DLYPV","EVR:DlyGen-6-Delay-RB")</pre>					
 Stand-alone IOC running in another host 	<pre>epicsEnvSet("EVR_CNTPV","EVR:BIAcqStCnt-I") epicsEnvSet("SAMPRATEPV","\$(DAQDEV):SamplingFrequencyR") epicsEnvSet("DECIMATIONPV","\$(DAQDEV):Decimation-RB")</pre>					
	<pre>sdsCreateChannel("\$(DAQDEV):CH1-TRC1-ArrayData" "15" "1" "\$(SAMPRATEPV)" "\$(DECIMATIONPV)" "\$(EVR)" "\$(EVR_PUL)" "\$(EVR_OUT)"</pre>					
	<pre>sdsCreateChannel("\$(DAQDEV):CH2-TRC1-ArrayData" "15" "1" "\$(SAMPRATEPV)" "\$(DECIMATIONPV)" "\$(EVR)" "\$(EVR_PUL)" "\$(EVR_OUT)"</pre>					

5

Architecture

Web interface to configure new collectors

ess

SDS Collect	or Servi	ices					
✓ CSLab Test	•	icBLM-test	Fdit	Editing collector		×	ed I
icBLM-test CSLab icBLM-live		Event Name: Event Code: Running: Last collection: Collection time [s]: Collection size:	DOD 42 true 2024-09-09 14.4 7.8 MiB	Collector Name: icBLM-test Event Name: DOD Event code: 42 Load from json file	PV list: PBI-ICBLM13:Ctrl-AMC-120:Ch6RawTrc-ArrayDataSDS-DODData PBI-ICBLM13:Ctrl-AMC-130:Ch7RawTrc-ArrayDataSDS-DODData PBI-ICBLM13:Ctrl-AMC-130:Ch6RawTrc-ArrayDataSDS-DODData PBI-ICBLM13:Ctrl-AMC-110:Ch8RawTrc-ArrayDataSDS-DODData PBI-ICBLM13:Ctrl-AMC-120:Ch3RawTrc-ArrayDataSDS-DODData PBI-ICBLM13:Ctrl-AMC-130:Ch2RawTrc-ArrayDataSDS-DODData PBI-ICBLM13:Ctrl-AMC-130:Ch2RawTrc-ArrayDataSDS-DODData PBI-ICBLM13:Ctrl-AMC-110:Ch2RawTrc-ArrayDataSDS-DODData PBI-ICBLM13:Ctrl-AMC-120:Ch5RawTrc-ArrayDataSDS-DODData PBI-ICBLM13:Ctrl-AMC-120:Ch5RawTrc-ArrayDataSDS-DODData PBI-ICBLM13:Ctrl-AMC-110:Ch6RawTrc-ArrayDataSDS-DODData PBI-ICBLM13:Ctrl-AMC-110:Ch6RawTrc-ArrayDataSDS-DODData PBI-ICBLM13:Ctrl-AMC-130:Ch7RawTrc-ArrayDataSDS-DODData PBI-ICBLM13:Ctrl-AMC-130:Ch7RawTrc-ArrayDataSDS-DODData PBI-ICBLM13:Ctrl-AMC-130:Ch7RawTrc-ArrayDataSDS-DODData PBI-ICBLM13:Ctrl-AMC-100:Ch7RawTrc-ArrayD		3d L 22 22 22 22 22 22 22 22 22 22 22 22 22
					PBI-ICBLM13:Ctrl-AMC-110:Ch1RawTrc-ArrayDataSDS-DODData	Submit false	2

Configuring the stream acquisition

SDS Collector Services

Ø

icBLM-live	🖍 Edit 🛅 Remove 🗘
Event Name:	F14Hz
Event Code:	40
Running:	false
Last collection:	2024-09-10T08:42:13.345204
Collection time [s]:	0.0856
Collection size:	513 KiB
Run for [s] 1 🔨 M 🕨 Start

ΡV	Q	Connected	Last Event [UTC]	Event Rate [1/s]	Event Size
PBI-IC	BLM13:Ctrl-AMC-130:Ch7RawTrc-ArrayDataSDS-LiveData	false	2024-09-10T08:41:53.114548	13.8	39 KiB
PBI-IC	BLM13:Ctrl-AMC-120:Ch1RawTrc-ArrayDataSDS-LiveData	false	2024-09-10T08:41:53.068071	14.0	39 KiB
PBI-IC	BLM13:Ctrl-AMC-130:Ch4RawTrc-ArrayDataSDS-LiveData	false	2024-09-10T08:41:53.088422	13.9	39 KiB
PBI-IC	BLM13:Ctrl-AMC-120:Ch3RawTrc-ArrayDataSDS-LiveData	false	2024-09-10T08:41:53.086114	14.0	39 KiB
PBI-IC	BLM13:Ctrl-AMC-110:Ch6RawTrc-ArrayDataSDS-LiveData	false	2024-09-10T08:41:53.107035	14.1	39 KiB
PBI-IC	BLM13:Ctrl-AMC-110:Ch4RawTrc-ArrayDataSDS-LiveData	false	2024-09-10T08:41:53.082015	14.1	39 KiB
PBI-IC	BLM13:Ctrl-AMC-130:Ch6RawTrc-ArrayDataSDS-LiveData	false	2024-09-10T08:41:53.112300	12.9	39 KiB
PBI-IC	BLM13:Ctrl-AMC-110:Ch7RawTrc-ArrayDataSDS-LiveData	false	2024-09-10T08:41:53.116522	13.9	39 KiB
PBI-IC	BLM13:Ctrl-AMC-120:Ch5RawTrc-ArrayDataSDS-LiveData	false	2024-09-10T08:41:53.088304	14.1	39 KiB
PBI-IC	BLM13:Ctrl-AMC-130:Ch1RawTrc-ArrayDataSDS-LiveData	false	2024-09-10T08:41:53.070100	14.0	39 KiB
PBI-IC	BLM13:Ctrl-AMC-120:Ch8RawTrc-ArrayDataSDS-LiveData	false	2024-09-10T08:41:53.104309	14.2	39 KiB
PBI-IC	BLM13:Ctrl-AMC-130:Ch8RawTrc-ArrayDataSDS-LiveData	false	2024-09-10T08:41:53.122338	13.8	39 KiB
PBI-IC	BLM13:Ctrl-AMC-120:Ch6RawTrc-ArrayDataSDS-LiveData	false	2024-09-10T08:41:53.090019	15.1	39 KiB
PBI-IC	BLM13:Ctrl-AMC-110:Ch1RawTrc-ArrayDataSDS-LiveData	false	2024-09-10T08:41:53.072238	14.0	39 KiB
PBI-IC	BLM13:Ctrl-AMC-130:Ch5RawTrc-ArrayDataSDS-LiveData	false	2024-09-10T08:41:53.099630	13.8	39 KiB
PBI-IC	BLM13:Ctrl-AMC-130:Ch3RawTrc-ArrayDataSDS-LiveData	false	2024-09-10T08:41:53.086403	13.9	39 KiB
PBI-IC	BLM13:Ctrl-AMC-130:Ch2RawTrc-ArrayDataSDS-LiveData	false	2024-09-10T08:41:53.080161	13.9	39 KiB
PBI-IC	BLM13:Ctrl-AMC-120:Ch7RawTrc-ArrayDataSDS-LiveData	false	2024-09-10T08:41:53.099526	15.1	39 KiB
PBI-IC	BLM13:Ctrl-AMC-110:Ch8RawTrc-ArrayDataSDS-LiveData	false	2024-09-10T08:41:53.117057	14.1	39 KiB
PBI-IC	BLM13:Ctrl-AMC-110:Ch2RawTrc-ArrayDataSDS-LiveData	false	2024-09-10T08:41:53.074343	14.0	39 KiB
PBI-IC	BLM13:Ctrl-AMC-110:Ch3RawTrc-ArrayDataSDS-LiveData	false	2024-09-10T08:41:53.076448	14.1	39 KiB
PBI-IC	BLM13:Ctrl-AMC-120:Ch2RawTrc-ArrayDataSDS-LiveData	false	2024-09-10T08:41:53.078322	14.0	39 KiB

NExUS files available in Jupyterhub

ess

NExUS file metadata collection

6

Conclusions

Validation Tests

Test setup in the lab with different MTCA systems:

- MTCA 1 Generic acquisition with Struck SIS8300 (FC, WS) and IFC1410 (EMU)
- MTCA 2 LLRF and RFLPS-FIM
- MTCA 3 BCM (SIS8300)
- MTCA 4 Event Master (superCycle)
- MTCA 5 BPM (4x Struck SIS8300) *

Testing with LLRF and RFLPS in Test Stand 2

- Successful demonstration for RF stakeholders
- Not connected to the Timing Network

Performance Impact

Performance is relative

- Depends on the system (number of channels, sampling rate, number of points)
- Depends on the hardware

Obvioulsly the current scenario is not optimal

- Arrays are being copied too many times along the process
- PVA links within the same host
- NDPlugin performance impact is lower

BCM IOC with 20 channels 400k samples (32-bits) running acquisitions at 14 Hz

0[15.9%	4[13.2%
1[19.4%	5[18.1%
2[12.7%	6[13.2%
3[18.1%	7[16.8%
Mem [1.10G/15.5G	Tasks: 41, 28	8 thr, 187 kthr; 1 ru
Swp[524M/4.00G	Load average:	1.84 4.60 6.09
		Uptime: 14 da	ys, 12:55:23

BCM IOC with 20 channels 400k samples (32-bits) running acquisitions at 14 Hz + SDSIOC monitoring all 20 waveforms

0[52.0%	4[48.4%
1[47.7%	5[45.8%
2[48.4%	6 [52.3%
3[51.0%	7[50.3%
Mem[1.78G/15.5G	Tasks: 44, 358 thr, 188	kthr; 4 ru
Swp[524M/4.00G	Load average: 6.30 5.43	6.23
		Uptime: 14 days, 12:57:0	06

Performance Impact

Scenario with separate IOC did not degrade the performance of the majority of the systems

- BCM
- WS, EMU
- LLRF
- RFLPS-FIM

The heaviest system is the BPM with four digitizers

Using the NDPlugin made the SDS IOC feasible

BCM IOC with 20 channels 400k samples (32-bits) running acquisitions at 14 Hz

0[15.9%	4[13.2%
1[19.4%	5[18.1%
2[12.7%	6[13.2%
3[18.1%	7[16.8%
Mem	1.10G/15.5G	Tasks: 41 , 288 thr,	187 kthr; 1 ru
Swp[524M/4.00G	Load average: 1.84 4	.60 6.09
		Uptime: 14 days, 12:	55:23

BCM IOC with 20 channels 400k samples (32-bits) running acquisitions at 14 Hz + SDSIOC monitoring all 20 waveforms

0[52.0%	4[48.4%
1[47.7%	5[45.8%
2[48.4%	6[52.3%
3[51.0%	7[50.3%
Mem[1.78G/15.5G	Tasks: 44, 358 thr, 188	kthr; 4 ru
Swp[524M/4.00G	Load average: 6.30 5.43	6.23
		Uptime: 14 days, 12:57:0	06

Next Steps

- Finish the development of the SDS IOC module and release the first version
- Deploy the SDS IOC module for LLRF, RFLPS and some PBI systems before the next commissioning
- Test the SDS Collector at a larger scale
- Re-evaluate the technical solutions and explore other options to optimize performance:
- Array management should be done at the device support layer
- Data analysis framework: work in progress
- Systems Engineering document to describe the workflow
- Improve current solutions for data retrieval
- Enable DASK as the Python library for parallel and distributed computing
- The dream: "Given these PVs from this period to that period, calculate something and show me the results"

Thank you / Obrigado / Tack