
EPICS Deployment at Sigray
using Docker

Presenter: Hong Truong
Co-authors: Benjamin Stripe, Ernesto Paiser, Ibrahim
Saleh, Richard Farnsworth

Large intact
PCB imaged
on Apex XCT
at multiple
FOVs and
voxels down
to 1 μm

Founded in 2013
• Dr. Wenbing Yun (OSA Fellow and serial

entrepreneur that founded Xradia, now Carl
Zeiss X-ray Microscopy) and Sylvia Lewis

Our Technology:
• Strong IP: 64 patents, 30+ pending, many

trade secrets
• Disruptive x-ray components (source & optics)
• 5 world leading product families
Rapidly Growing:
• 34k sq. ft. facility in Concord, CA (San

Francisco Bay Area) and 82 employees
• Global installation base of leading universities

and companies (semiconductor & pharma)

Intro to Sigray
Mission: Bring next-generation x-ray

analytical capabilities from the
synchrotron to the laboratory

2

Refer to Benajmin Stripe’s presentation for more
information.

https://conference.sns.gov/event/448/contributions/701/

Contents
● Motivation
● Technologies
● How it works
● Usage
● Deploying updates
● Takeaways

3

● A machine has multiple devices, each controlled with an EPICS IOC

● IOC settings may be different between machines

○ Differences can include what db, template, or iocsh files are called, environment settings, IP
addresses, etc.

○ Difficult to maneuver IOCs to allow us to do this natively

● We already had dockers for each IOC

○ Each docker had its own folder

○ Not in version control

● Difficulties

○ Hard to know what dockers are existed

○ Hard to track the configuration differences between machines

■ This leads to making it hard to identify and propagate fixes that were made on one machine
and not others

○ Hard to reproduce a machine

Motivation
4

The pre-existing setup

● Track the configuration of machines after shipment to be able to reproduce the machine

○ Set up new machines

○ Reinstall dockers if a computer fails

○ Debug issues with shipped machines

● Make it easy to share fixes and feature updates across all machines

○ Can involve changing synApps module versions, manual fixes to IOC source code via docker,
system startup service scripts, etc.

● Standardize shared configuration to make debugging and setup easier

○ Ports, IP addresses, paths

● Allow offline updates (and builds) due to customer restrictions

● Make it easy to create new IOCs

Motivation
5

We wanted to …

● A mix of users

○ Non-Linux users unfamiliar with a terminal or bash

○ Varying ranges of familiarity with Python and docker

● Controls engineers and software engineers

○ Add new IOCs and docker services

● Systems engineers

○ Customize files for the system (e.g. hdf5 xml files for areaDetector and db files)

● Field service engineers

○ Perform updates

○ Reload autosave files

Motivation
6

Who would be the user?

Technologies

7

• Bash

• Helper scripts

• Easier to call most commands directly
• Python

• Helper scripts and GUI
• Will replace most of the bash scripts

because it’s more readable and easier to
debug

• Poetry
• Python dependency manager

• Tests
• Bats framework for bash tests
• pytest for everything else

• Docker

• Allow conflicting dependencies

• Freeze dependencies

• Easy to deploy

• Docker Compose

• Allow inheritance of docker service
definitions

• Can define multiple dockers and their
build and run settings in one file

• Portainer

• Docker management

• Procserv

• Wrapper for running IOCs as background
processes with telnet access

● Configuration, Installation, and Deployment of EPICS Repositories

● Basic idea

○ One repository to store all docker-related files and machine configuration files

○ Have one base docker image for online dependencies

■ Mostly installing synApps modules with assemble_synApps.sh

○ Each IOC docker image builds on top of the base docker image and includes no online
dependencies at build time

○ Each machine mounts its own set of files at runtime, overwriting existing IOC files

○ Use environment variables and inheritance to avoid code duplication

● Allows us to:

○ View existing docker services for IOCs (and other utilities) and add them for specific machines

○ Make and track modifications to the IOCs per machine

○ Standardize values in an environment file and propagate them to all dockers

CIDER
8

Overview

● components/

○ component_a/

■ common-services.yml

■ compose.yml

■ Dockerfile

■ common/

■ variation_1/

■ …

● ioc_submodules/

● machine_compose_files/

○ compose.am-1124.yml

● environment_files/

○ common_env_vars

○ am-1124.config

CIDER
9

File Structure Example

● components/

○ component_a/

■ common-services.yml

■ compose.yml

■ Dockerfile

■ common/

■ variation_1/

■ …

● ioc_submodules/

● machine_compose_files/

○ compose.am-1124.yml

● environment_files/

○ common_env_vars

○ am-1124.config

CIDER
10

File Structure Example

CIDER

11

Machine Callgraph

Environment files

Bash/python
wrapper

Docker Compose

Machine compose
file

Component
compose files

Dockerfile

IOC

Runtime files

Component
compose files

Component
compose files

defect files, hdf5 xml files,
st.cmd, db, template files,

medm files, etc

systemd script

The machine is configured using:

● Environment files dictate:

○ Machine compose file

○ What paths are mounted

○ IOC settings (e.g. sequencer,
st.cmd, .db. etc)

● A machine compose file to dictate
what IOC dockers it uses

○ Simply extends component
definitions to reduce code
duplication

● Docker bind mounts to overwrite
specific IOC files

env vars

env vars

env vars

Control turf grass imaged on Sigray AttoMap. Potassium (green), calcium (red), manganese (blue) at 20 micron step sizes.

Usage

12

How we use CIDER

Usage
13

Machine setup

● Set up new machines

○ Set up udev rules (for serial-specific devices) and network settings

○ Create configuration files

○ Build and run docker services

○ Save settings

■ Autosave files

■ OS version

■ udev rules

■ Network configuration

● Total setup time: 30-60 minutes (including build time)

○ Assuming there aren’t any new devices or issues

○ Not including Jenkins and PRs

Usage

● Use Portainer to restart the dockers/IOCs with updates

14

Tools - Portainer

Usage

● Easy access to files for system engineers

● Rebuilding dockers and recreating containers

○ Portainer does not quite have this feature

15

Tools - GUI

● Load and save autosave files

○ Doing this manually can be quite tedious if there is more than one autosave file

○ This is confusing for non-EPICS users to do manually

Usage
16

Tools - GUI

Usage

● Other system setup tasks, like generating udev rules for USB devices

○ Very easy to mess up with a typo and very hard to debug

17

Tools - GUI

Plant root imaged with Sigray EclipseXRM at 3.4 micron voxel size

Deploying Updates

18

Online Updates
19

Update the CIDER
repository

Run update
scripts

Update the
environment Build dockers Run hardware

tests

Goal: Offline Updates

● No internet access allowed

○ Cannot rebuild docker images that access internet (e.g. assemble_synapps)

● File size restrictions

○ Cannot export 7+ docker images that are 2-3 GB each

○ Cannot put all contents into one giant docker image

20

Customer Restrictions

Goal: Offline Updates

● Files

○ Base docker image

■ Contains all shared online dependencies like synApps, Linux packages, etc

○ CIDER

■ Contains environment files, configuration files, and helper scripts

○ GUI folder

■ Generated by pyinstaller, making python dependencies portable

● Procedure

21

Expected Procedure

Jenkins pipeline
builds and

generates files

Copy generated
files to machine

Installer imports
the base docker

image tar

Installer updates
CIDER and

configuration files

Rebuild docker
images

Potassium distribution in flowers
acquired on Sigray AttoMap

Takeaways

This includes CIDER, EPICS, and non-EPICS
takeaways.

22

Takeaways

23

The Bad

● CIDER is difficult to develop with

○ The file structure can be confusing, and developers need to know what files are in the IOC submodule
and what files are overwritten by CIDER

○ Having a branch per machine can lead to more toil if changes are frequently made after PRs are
merged

○ Perhaps a file structure refactor with local config files and a version controlled configuration repository
will improve this

● Having one environment file makes it unclear what variables correspond to what docker service

○ This makes it hard to know what environment variables to define or remove when adding/removing
docker services

○ Hopefully the addition of multiple environment files in docker compose or just plain old Python to
generate the environment files and machine compose files

● Storing configuration files in the same repository is not sustainable

○ Repository size will keep growing as we build more systems

○ Plan to move them into their own repository or make them local

Takeaways

24

● Autosave can be unreliable
○ Turning off power to devices can lead to some PVs being wiped in autosave
○ Some PVs will randomly reset when the IOC or computer restarts

● MEDM is not very dynamic, and it can be hard to make modifications
● EPICS can be confusing to develop with (requires training) and debug
● Some of these issues may totally be due to my insufficient knowledge of EPICS!

The Bad

Takeaways

25

The Good

● Reuse an IOC repository as much as possible to make it easier to propagate changes to all machines
○ Achieved by moving as many build-time settings to run-time as possible to avoid requiring

recompilation (and thus a new docker image)
■ Use environment variables in sequencer, st.cmd, .db

○ This also makes testing faster and easier, since we can heavily test the base IOC and sprinkle tests
for the runtime settings

● Migration scripts have helped with ensuring machine settings are not lost during updates, even if the
configuration files have changed structurally

● Keeping configuration files in version control is great!
○ Track why changes were made, rollback to an older version, diff files, etc

● ADAravis is great for creating new IOCs for GenICam-compatible detectors!
○ Doesn’t always work right off the bat

● Docker and docker compose has some helpful features that allows us to have a simpler file structure
○ multiple build contexts

■ Can organize things in terms of logical categories rather than in terms of docker images
■ Avoids duplication of files that belong in multiple docker images

○ The docker compose file itself can use environment variables
■ Useful for storing all env vars in one file and propagating them

○ (Future) The include top-level element
■ Allow us to define dependencies without:

● Duplicating docker service definitions
● Defining service definitions in the same docker compose file

Takeaways

26

The Good

Interior of Vacuum version of Sigray QuantumLeap

Thank you!

27

