SEPTEMBER 17, 2024

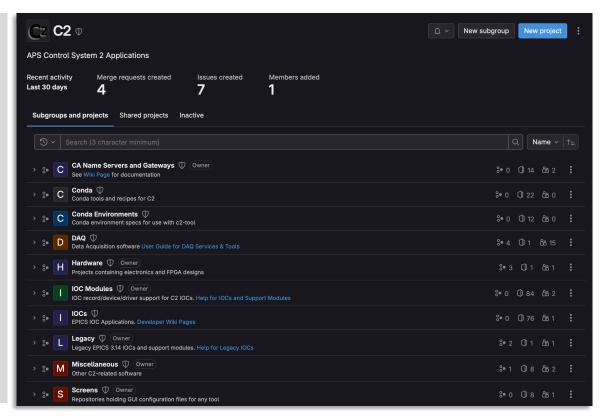
UPGRADING THE APS ACCELERATOR EPICS CONTROL SYSTEMS

C2

ANDREW JOHNSON
ASD/Controls Group
Argonne National Laboratory

OUTLINE

A few of the technical changes & challenges the APS Controls group implemented to build the "C2" APS Accelerator control system


- CVS ⇒ Git and GitLab
- EPICS Extensions ⇒ Conda environments with environment-modules
- Manual module configuration ⇒ Building support modules using EPICS Sumo
- sysvinit scripts to start soft IOCs ⇒ systemd for managing soft IOCs
- One accelerator IP subnet ⇒ 5 subnets for IOCs, 2 for CA clients, 30 for I/O

GITLAB SERVER FOR SOURCE CODE CONTROL

Repositories containing:

- All Controls software that we build from source
 - External sources are imported from released versions, not Git repo's
- Most software configuration data (Sumo DB, Gateways, Conda environment specs)
- Display screen files for CSS/ Bob and MEDM (all legacy MEDM screens still in CVS)
- Scripts, systemd unit files, environment-modules, etc.
- FPGA code, documentation

PACKAGE REPOSITORY WEBSERVER

For deployed Conda packages and other imported software

c2								
RSS Feed channeldata.json								
alive	1.1.0			EPICS	х			Libraries and executables for the EPICS ALIVE module supported by the
aps-cf-cli	0.0.3				x			None
aps-event	4.5			EPICS	х			Libraries and executables for the EPICS APS EVENT module supported by
aps-sdds	5.3			EPICS	х	X		APS SDDS Python Library
area-detector	3.2			EPICS	х			Libraries and executables for the EPICS AREA DETECTOR module supported
asd3	1.1			EPICS	х			Libraries and executables for the EPICS ASD3 module (vxworks-ppc32)
asyn	4.33			EPICS	х			Libraries and executables for the EPICS ASYN module supported by the
autoroute	2.4.1			APS	х			Installs autoroute program used for switching APS video system.
autosave	5.9			EPICS	х			Libraries and executables for the EPICS AUTOSAVE module supported by
auxiliary_scripts	0.7				х			APS Auxiliary Scripts
bely-api	2024.6			Copyright	Х			Library Containing Component DB APIs
bidict	0.22.1						x	None
busy	1.7			EPICS	х			Libraries and executables for the EPICS BUSY module supported by the
c2-css-phoebus	0.1.3				х			Launch scripts for CS-Studio Phoebus.
c2-data-viewer	1.0.0			APS	x	X		APS C2 Data Viewer.
c2-tool	0.5			APS			х	APS Controls group C2 management tool.
c2dataviewer	1.13.2			APS	х			APS C2 data viewer
calc	3.7			EPICS	х			Libraries and executables for the EPICS CALC module supported by the
caput-recorder	1.7			EPICS	х			Libraries and executables for the EPICS CAPUT RECORDER module supported
cf-reporter	1.6.11			APS	х			Installs a service which reports channel and channel health to
cf_client	1.3.1						x	Installs a command line client for Channelfinder Server.
channelfinder	4.7.0						х	Channelfinder client for python.
channelfinder-server	4.7.2			APS	х			Installs Channelfinder Server and ElasticSearch Server.
componentdb-api	3.15.8			Copyright			x	Library Containing Component DB APIs
componentdb-cli	3.15.8			Copyright			x	Command line utilities for Component DB
сррро	4.4.2			GNU			x	Cpppo is a Communication Protocol Python Parser and Originator
daq-aggregator	0.9.3			APS	х			APS DAQ Aggregator

Web server containing:

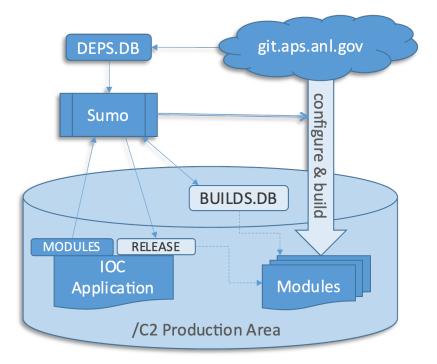
- Conda packages, both imported and locally built for deployment
- Tar-balls & zip-files for all open-source code that we build or install unmodified
- Commercial SDKs and other binary packages we install

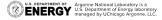
NFS, CONDA AND EPICS SUMO

- NetApp & Linux NFS servers store & backup many file-systems
 - RHEL-8 still provides NFSv2 over UDP (not supported by RH)
 - Needed for a dwindling set of legacy RTEMS-4 devices
- Conda to package and deploy versioned applications
- EPICS Sumo builds support modules and populates configure/RELEASE files
- Scripts to checkout/update and build IOCs in production area
 - Manually initiated, limit access to the account used for production builds
- Separate build areas for legacy (EPICS 3.14) and C2 (EPICS 7) IOCs
 - Converted 65 legacy IOC tops and 133 modules from CVS to Git, rebuilt
 - Legacy IOCs needed a few updates, e.g. to change device IP addresses

USING CONDA FOR MANY APPLICATIONS

- Developed C2-Tool to version-control our installed application environments
 - Simplifies deployment of standardized applications to the /C2 areas
- Packaged many applications, both internal and external
 - EPICS Base, Sumo, our IOC tools, c2dv, CSS-Phoebus, Logstash, etc.
- Use Conda for python applications
 - Auxiliary-scripts area for simple scripts that we don't package for Conda




EPICS SUMO — AUTOMATES EPICS BUILDS

A single command builds a set of dependencies from source in git

SUpport MOdule Manager for EPICS

- Very useful software from HZB
 - pip install epics-sumo
- Uses a dependency database DEPS.DB to checkout and build a set of EPICS support module versions requested by an IOC top
 - Reuses modules already built against the same set of dependencies
- Creates the IOC configure/RELEASE files

BUILD SCRIPT OUTPUT FROM AN IOC UPDATE

```
----- acis/B1 >>>>>>>
Updating IOC branch at /C2/iocs/acis/B1
Commits to apply:
  551e019 Changed db/SYNCACISPLCTIMEAGAIN.db database to db/SYNCACISPLCTIME.db
  970f7ce Changed $(Z)-ACIS:EPICS:ClockSyncC OUT field to 'EPICS Clock Pulse'
Updating 923d7ac..551e019
Fast-forward
 iocBoot/sioc2acis5/st.cmd | 2 +-
 xlsx/ACISSR.xlsx | Bin 342433 -> 342688 bytes
 2 files changed, 1 insertion(+), 1 deletion(-)
Reusing configure/RELEASE
Building IOC branch at /C2/iocs/acis/B1
IOC build succeeded, logged in /C2/iocs/acis/logs/build-B1-2024-09-04-16:11.log
<<<<<< acis/B1 -----
```


USE SYSTEMD + MAKEFILES TO MANAGE SOFT IOCS

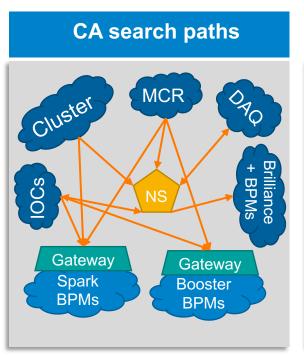
Makefiles run systematl --user commands remotely over ssh

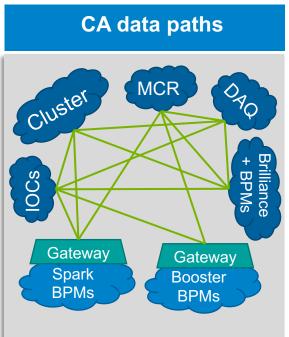
Help commands

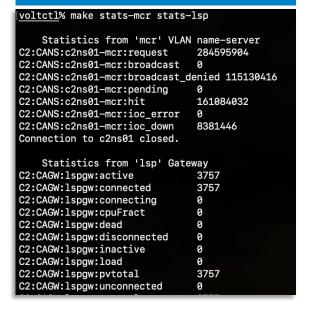
```
voltctl% make help
Usage: make [target]
The rawps IOCs run on: c2ioc05.
Targets for general use:
                - Print this list of make tard
    help
                - List all unit files installed
   units
   services
                - List all systemd services pro
Targets for remote IOC management
   reload-all
                          - Reload systemd user
                            This does not affec
   start-all
                          - Start all rawps IOC
    start-s01
                          - Start IOC sioc2s01ra
   start-sioc2s01rawps
                          - Start IOC sioc2s01r
   list-all
                          - List all active IOC
                          - Show all services
    status-all
   status-s01
                          - Show service status
   status-sioc2s01rawps - Show service status
   restart-all
                          - Restart all rawps I
   restart-s01
                          - Restart IOC sioc2s03
   restart-sioc2s01rawps - Restart IOC sioc2s0
   stop-all
                          - Stop all rawps IOCs
   stop-s01
                          - Stop IOC sioc2s01ra
   stop-sioc2s01rawps
                          - Stop IOC sioc2s01ra
```

Templated unit files

```
voltctl% ls
c2-ioc-camera-ioc2bslmcam1-bslmcam1.servi
c2-ioc-camera-ioc2bslmcam2-bslmcam1.servi
c2-ioc-camera-ioc2pslmcam1-pslmcam1.servi
c2-ioc-camera-ioc2pslmcam2-pslmcam2.servi
c2-ioc-camera-sioc2bslmcam3-c2ioc02.servi
c2-ioc-camera-sioc2bslmcam4-c2ioc02.servi
c2-ioc-camera-sioc2btsfs3cam1-c2ioc02.ser
c2-ioc-camera-sioc2btsfs4cam1-c2ioc02.serv
c2-ioc-camera-sioc2btsfs5cam1-c2ioc02.serv
c2-ioc-camera-sioc2leafs4cam1-c2ioc02.serv
c2-ioc-camera-sioc2s35cam1-c2ioc02.service
c2-ioc-NAME-IOC-HOST.SERVICE
c2-iocs-camera-bslmcam1.target
c2-iocs-camera-c2ioc02.target
c2-iocs-camera-pslmcam1.target
c2-iocs-camera-pslmcam2.target
c2-iocs-NAME-HOST.TARGET
Makefile
Makefile.iocs
```

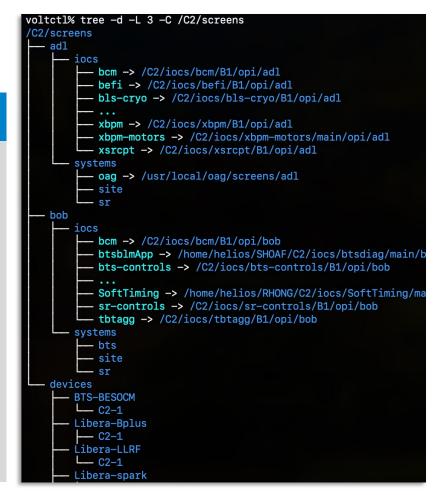

Systemd unit hierarchy


```
voltctl% make deps-on-c2ioc05
c2-iocs-c2ioc05.target
   -c2-iocs-misc-c2ioc05.target
     -c2-ioc-misc-sioc2bcm-c2ioc05.service
     -c2-ioc-misc-sioc2btsblm-c2ioc05.service
    L-c2-ioc-misc-sioc2btsflag-c2ioc05.service
   -c2-iocs-rawps-c2ioc05.target
     -c2-ioc-rawps-c2ioc05@s01.service
     -c2-ioc-rawps-c2ioc05@s03.service
     -c2-ioc-rawps-c2ioc05@s05.service
     -c2-ioc-rawps-c2ioc05@s07.service
     -c2-ioc-rawps-c2ioc05@s09.service
     -c2-ioc-rawps-c2ioc05@s11.service
    -c2-ioc-rawps-c2ioc05@s13.service
     -c2-ioc-rawps-c2ioc05@s15.service
     -c2-ioc-rawps-c2ioc05@s17.service
     -c2-ioc-rawps-c2ioc05@s19.service
     -c2-ioc-rawps-c2ioc05@s21.service
     —c2-ioc-rawps-c2ioc05@s23.service
     -c2-ioc-rawps-c2ioc05@s25.service
     -c2-ioc-rawps-c2ioc05@s27.service
     -c2-ioc-rawps-c2ioc05@s29.service
         inc-rawne-clincaFac21 corvice
```



CA NAME SERVERS AND GATEWAYS

How CA clients connect between the multiple network VLANs we use

Use systemd & make



DISPLAY SCREEN FILES

/C2/screens tree structure

- Holds screens for both MEDM (.adl) and CSS/Bob (.bob, .ui) display managers
- Uses soft-links to simplify paths to IOC tops
 - Long related-display paths break easily when their destination moves
- IOC builds install screens needed from their support module versions, providing the right screen for the records & databases loaded
- A script open-C2-screen can open both types of screen, with macros, to allow links between the screen types
 - Could implement a display search path for CSS/Bob, which doesn't have one

