
Overview of the Machine Learning Data Platform (MLDP) with focus on
the Data Platform (DP) subsystem

Machine Learning Data Platform

1

Christopher K. Allen
Craig McChesney

Topics
• MLDP Overview - “The Big Picture”
• Survey of MLDP Elements
• Project Status and Road Map
• Summary

2

MLDP
Overview
“The Big Picture”

• Motivation

• Concept

• Subsystems

3

MLDP
Overview
Motivation

Full-stack support for machine learning and general
data science applications for the diagnosis, modeling,
control, and optimization of large particle accelerator
and experimental physics facilities.

• From high-speed data acquisition to rapid ML/AI
application development and deployment.

• A standardized platform for rapid implementation and
deployment of ML/Data Science algorithms to different
operating configurations and different facilities.

• Data science perspective of archived facility data

4

MLDP Overview
Concept

Conceptual diagram of Machine Learning Data Platform

The Machine Learning Data Platform (MLDP)
has 3 primary functions:

1. High-speed data acquisition (EPICS).

2. Archiving, processing, and management of
heterogeneous, time-correlated data.

3. Data Analysis: Broad query, annotation,
and processing of archive.
(data science/ML/AI applications)

• Functions are realized by separate subsystems
each supporting a category of use cases.

5

MLDP Overview
Subsystems

Machine Learning Data Platform subsystems and deployment 6

1. Aggregator (a Data Provider)
• High-speed data acquisition and collection of

facility hardware data.
• Deployed with EPICS control system.

2. Data Platform (previously Datastore)
• Standalone – deployed on separate server(s),

EPICS not required.
• Any facility may use data platform.

• Contains the Data Archive.
• Composed of collaborating services.
• Independent gRPC comm. framework.
• Well-defined APIs for communication.

3. Web Application provides remote access to
Data Archive using an internet web browser.
• Attaches to the Data Platform subsystem.

Topics
• Overview of the MLDP - “The Big Picture”

• Survey of MLDP Elements
• Project Status and Road Map
• Summary

7

Survey of
MLDP
Elements

• Tech Stack

• Aggregator / Data Provider

• Data Archive

• gRPC API

• Data Platform / Core Services

• Client Libraries

• Web Application

8

MLDP Elements
Tech Stack

9

• The Data Platform Core Services are implemented
as Java server applications.

• The MongoDB document-oriented database
management system is used by the services for
persistence.

• The Data Platform API is built upon the gRPC open-
source high-performance communication
framework.

• Java and Python Client Libraries are provided for
higher-level interaction hiding the gRPC API details.

• Applications communicate either directly via the
gRPC API or using the Client Libraries.

Survey of
MLDP
Elements

• Tech Stack

• Aggregator / Data Provider

• Data Archive

• gRPC API

• Data Platform / Core Services

• Client Libraries

• Web Application

10

MLDP Elements
Aggregator / Data Provider

Aggregator use cases

Aggregator system architecture
11

Aggregator performs synchronous, high-speed data
acquisition and collection within EPICS control system.

Distributed system
• Local Aggregators – proximal to hardware

• Collect and align local hetero data.
• May have multiple data sources.
• Transport to Central Aggregator.

• Central Aggregator
• Coalesce all aggregated data.
• Stage as NTTable “snapshots”.
• Transport to Data Platform via API.

Clients here are
hardware systems

Survey of
MLDP
Elements

• Tech Stack

• Aggregator / Data Provider

• Data Archive

• gRPC API

• Data Platform / Core Services

• Client Libraries

• Web Application

12

MLDP Elements
Data Archive

Data Archive contains
• PV Time-Series Data – Heterogenous, correlated, time-series device data.

• Flows in as Data Frames (NTTables) .
• Flows out as dynamic Data Tables.

• Metadata – Characteristics/associations/properties within snapshot data.
• Created by Ingestion Service and augmented by Query Service.
• Flows out as Metadata Records.

• Annotations – User additions to data archive (notes, relations, calculations).
• Created by Data Consumers as “value-added” data.
• Flows out as Annotation Records.

13MLDP data flow diagram

NOTE: The MLDP data archive is
maintained completely by the Data
Platform subsystem.

Survey of
MLDP
Elements

• Tech Stack

• Aggregator / Data Provider

• Data Archive

• gRPC API

• Data Platform / Core Services

• Client Libraries

• Web Application

14

MLDP Elements
gRPC API

• The gRPC communication framework was originally developed
by Google for use in connecting microservices.

• It uses HTTP/2 for transport, and Protocol Buffers as both the
interface definition language and message interchange
format.

• Supports simple unary single request / response APIs as well
as unidirectional and bidirectional streaming.

• We chose gRPC for the Data Platform API because it can meet
our performance requirements for data ingestion, provides
bindings for virtually any programming language, and
supports a variety of application styles.

15

MLDP Elements
gRPC API: Heterogeneous Data

16

• The API defines type “DataValue” to represent a range
of heterogeneous data types for use in the ingestion
and query interfaces ranging from simple scalar data
types to complex types including multi-dimensional
arrays, structures, and images.

• Each DataValue can optionally include “ValueStatus”
information captured from the control system.

• Times are represented using components for epoch
second and nanoseconds (a third component could be
added for finer resolution).

Survey of
MLDP
Elements

• Tech Stack

• Aggregator / Data Provider

• Data Archive

• gRPC API

• Data Platform / Core Services
• Service Model
• Ingestion Service
• Query Service
• Annotation Service

• Client Libraries

• Web Application

17

MLDP Elements
Data Platform- Service Model

18

Data Platform use cases as seen by clients

• The Data Platform Core Services manage the Data
Archive and are the primary interaction point for
clients.

• The Data Platform is a standalone system,
independent of EPICS.

• Fundamental components implemented as services
• Ingestion Service – clients are Data Providers that supply data

to the Archive.
• Query Service – clients are Data Consumers that interact with

the Data Archive.
• Engineers, data scientists, physicists, applications, remote users, etc.

• Annotation Service – clients are Data Consumers that supply
”value added” information to the Data Archive.

Clients are generically divided into
Data Providers - populate data archive
Data Consumers - utilize data archive

MLDP Elements
Data Platform / Core Services
Ingestion Service

• The Ingestion Service provides APIs for provider registration,
data ingestion, and querying status of ingestion requests.

• Processing is asynchronous to maximize performance.
• Writes time-series data “buckets” to MongoDB, each containing

vector of data values for a single PV over a time range.
• Bucket stores data values using serialized Protobuf format, and

specifies timestamps for data values using start time, sample
period, number of samples (or explicit list of timestamps).

19

rpc registerProvider (RegisterProviderRequest) returns (RegisterProviderResponse);
rpc ingestDataStream (stream IngestDataRequest) returns (IngestDataStreamResponse);
rpc queryRequestStatus(QueryRequestStatusRequest) returns (QueryRequestStatusResponse);

MLDP Elements
Data Platform / Core Services
Query Service

• The Query Service provides APIs for retrieving PV time-series data in
bucketed or tabular format, and for querying metadata about data
sources.

• Data query response contains data buckets matching query’s PV and
time range criteria.

• Client Library provides tools for assembling bucketed data from
response to a tabular structure, if appropriate.

20

rpc queryDataStream(QueryDataRequest) returns (stream QueryDataResponse);
rpc queryTable(QueryTableRequest) returns (QueryTableResponse);
rpc queryMetadata(QueryMetadataRequest) returns (QueryMetadataResponse);

MLDP Elements
Data Platform / Core Services
Annotation Service

• A Dataset is comprised of Data Blocks, each
specifying PV(s) and time range.

• The Annotation Service provides APIs for identifying
“Datasets” in the archive, adding annotations to
them, and performing queries.

• A number of different types of annotations are
supported (or planned), including basic descriptive
information, links between related datasets,
calculations, derived datasets, and provenance.

21

rpc createDataSet(CreateDataSetRequest) returns (CreateDataSetResponse);
rpc queryDataSets(QueryDataSetsRequest) returns (QueryDataSetsResponse);
rpc createAnnotation(CreateAnnotationRequest) returns (CreateAnnotationResponse);
rpc queryAnnotations(QueryAnnotationsRequest) returns (QueryAnnotationsResponse);

Survey of
MLDP
Elements

• Tech Stack

• Aggregator / Data Provider

• Data Archive

• gRPC API

• Data Platform / Core Services

• Client Libraries

• Web Application

22

MLDP Elements
Client Libraries

Libraries are also available for building Data Platform clients (under development).
• Client libraries avoid the complexities of direct gRPC communications.
• Offer additional features, such as default configuration, buffering, dynamic data tables, etc.

• Currently migrating high-level Java API libraries to new platform architecture.
• An additional Python query API is planned.

• Based upon Pandas library common to most data science.
• An EPICS pvAccess interface to the Ingestion Service is also anticipated.

23

Survey of
MLDP
Elements

• Tech Stack

• Aggregator / Data Provider

• Data Archive

• gRPC API

• Data Platform / Core Services

• Client Libraries

• Web Application
24

• Web Application is a browser-based application built
using JavaScript / React / Node.

• Web Application provides remote access to the DP data
archive.
• Facilitates a subset of Query and Annotation Service use

cases.
• Tools for inspection, visualization, downloads, and data

analysis.

• JavaScript Node server provides API that augments Data
Platform API.

• Envoy proxy translates http traffic from browser
application to http2 for consumption by gRPC servers.

25

Web Application Use Cases

Web Application Architecture

MLDP Elements
Web Application

Topics
• Overview of the MLDP - “The Big Picture”
• Survey of MLDP Elements

• Project Status and Road Map
• Summary

26

MLDP Project Status and Road Map
• Completed - Redesign of Data Platform Archive and Core Services

• Eliminated many 3rd party dependencies from prototype – now restricted to Java, gRPC, and MongoDB.
• Redesigned prototype gRPC API.
• Evaluated C++ gRPC for datastream processing (~ 500 MBps transmission rates).
• Created deployment tools.
• Implemented core service API handling for Ingestion, Query, and Annotation Services.
• Ingestion over 200x faster than prototype at ~ 200 MBps data ingestion rates.

• Roadmap
• Client Library development (Java and Python)
• Export mechanism
• More extensive load and scale testing
• Additional annotation types
• Data generator / simulator
• Support for Real-time consumer use cases via inline ingestion data stream processing / algorithm
• Framework for measuring data ingestion statistics from capture to archival
• Token based authentication for query clients and web application
• Age-based archival of data to reduce database footprint
• Tools for replication / synchronization of data and index to distributed researchers
• Investigate MongoDB clustering, sharding, and connection pooling
• Investigate horizontal scaling for service deployment

27

Topics
• Overview of the MLDP - “The Big Picture”
• Survey of MLDP Elements
• Project Status and Road Map

• Summary

28

Summary

• The Data Platform is a standalone subsystem of the
larger Machine Learning Data Platform (MLDP).
• Management of heterogenous data with focus on data science.
• A working prototype was initially developed – “Datastore”.
• A new, performance-based version is currently under

development – “Data Platform”.
• Data Platform has multiple components supporting use cases

as collaborating services (with well-defined APIs).

• Data Platform has 2 communication methods.
• Direct gRPC communications
• Client API libraries for Java and Python (under development).

• A deployment system is available for latest DP releases.
• Ingestion, Query, and Annotation Services are operational.
• Only direct gRPC communication is currently available.

29

Supplemental

30

Supplemental Material
• SBIR Project Background
• Ingestion Data Flow Diagram
• Bucket Pattern for Time-Series Data
• DP Deployment
• Example Data Flow
• Why use an API?
• Authentication / Authorization
• Performance Benchmarks
• Application Layer: Low-Level API vs. High-Level Library

31

MLDP Overview
SBIR Project Background

MLDP development is supported by the US Dept. of Energy (DOE) under a Small Business Innovative
Research (SBIR) grant starting in 2022.

• A prototype MLDP was completed in Phase I with the following subsystems:
• Aggregator – EPICS based, high-speed synchronous data acquisition of heterogeneous data.
• Datastore – Standalone system for data ingestion, archive management and access.
• Web Application – Universal, remote access and interaction with data archive.

• SBIR Phase II awarded in 2023 (Fiscal Year 2024)
• Redesign of Datastore archive and services with emphasis on performance (Year 1).
• Support for full archive annotation (Year 1).
• Datastore use case expansions (Year 2)

• Datastream processing,
• Algorithm Plugins,
• Advanced Data Science Applications.

• “Data Platform” (DP) references previous “Datastore” system of prototype MLDP.
• Includes upgrades and extensions for Phase II project. 32

Supplemental Material
• SBIR Project Background

• Ingestion Data Flow Diagram
• Bucket Pattern for Time-Series Data
• DP Deployment
• Example Data Flow
• Why use an API?
• Authentication / Authorization
• Performance Benchmarks
• Application Layer: Low-Level API vs. High-Level Library

33

MLDP Elements
Ingestion Data Flow Diagram

34

Supplemental Material
• SBIR Project Background
• Ingestion Data Flow Diagram

• Bucket Pattern for Time-Series Data
• DP Deployment
• Example Data Flow
• Why use an API?
• Authentication / Authorization
• Performance Benchmarks
• Application Layer: Low-Level API vs. High-Level Library

35

36

MLDP Elements
Data Platform / Core Services
Ingestion Service: Bucket Pattern for Time-Series Data

• Simple example with 3 measurements, each stored as an individual database record:
{ sensor_id: 12345, timestamp: ISODate("2019-01-31T10:00:00.000Z"), temperature: 40 }
{ sensor_id: 12345, timestamp: ISODate("2019-01-31T10:01:00.000Z"), temperature: 40 }
{ sensor_id: 12345, timestamp: ISODate("2019-01-31T10:02:00.000Z"), temperature: 41 }

• Same 3 measurements stored in a single data bucket record, saving the overhead of sensor_id
and timestamp for each measurement:

{ sensor_id: 12345,
 start_date: ISODate("2019-01-31T10:00:00.000Z"),
 sample_period_nanos: 1_000_000_000,
 count: 3
 measurements: [40, 40, 41] }

Supplemental Material
• SBIR Project Background
• Ingestion Data Flow Diagram
• Bucket Pattern for Time-Series Data

• DP Deployment
• Example Data Flow
• Why use an API?
• Authentication / Authorization
• Performance Benchmarks
• Application Layer: Low-Level API vs. High-Level Library

37

DP Deployment
Installation Repository

• Installation distributed as a zipped
archive.
• Download and unzip into local

installation directory.

• Services deployed as Java “fat jars”.

• Services are started with scripts.
• located in expanded dp-support

directory.

• Process is well documented.
• See Github repository page.

38data-platform-installer.tar.gz - Download and unzip.

https://github.com/osprey-dcs/data-platform

Instructions/documentation

Supplemental Material
• SBIR Project Background
• Ingestion Data Flow Diagram
• Bucket Pattern for Time-Series Data
• DP Deployment
• Example Data Flow

• Aggregator
• Provider
• Ingestion Service
• Query Service
• Annotation Service

• Why use an API?
• Authentication / Authorization
• Performance Benchmarks
• Application Layer: Low-Level API vs. High-Level Library

39

Example Data Flow
Aggregator -> Provider

40

Example Data Flow
Provider -> Ingestion Service

41

Example Data Flow
Ingestion Service -> MongoDB

42

Example Data Flow
Consumer -> Query Service

43

Example Data Flow
Consumer -> Annotation Service

44

Supplemental Material
• SBIR Project Background
• Ingestion Data Flow Diagram
• Bucket Pattern for Time-Series Data
• DP Deployment
• Example Data Flow

• Why use an API?
• Authentication / Authorization
• Performance Benchmarks
• Application Layer: Low-Level API vs. High-Level Library

45

Why use an ingestion service API instead of
writing directly to the database?
This is a common question and is understandable when the focus is on ingestion
performance. Using a service API facilitates:

• Changing the underlying persistence technology or database schema transparently to the
clients

• Capturing data from a wide variety of devices without creating a custom capture client
for each of them that exposes the details of the underlying persistence mechanism and
must be kept in sync with database/schema changes

The performance measured for the initial ingestion service implementation is in the same
range as our benchmark for writing data directly to MongoDB, so using the service API
doesn't seem to degrade performance significantly.

46

Supplemental Material
• SBIR Project Background
• Ingestion Data Flow Diagram
• Bucket Pattern for Time-Series Data
• DP Deployment
• Example Data Flow
• Why use an API?

• Authentication / Authorization
• Performance Benchmarks
• Application Layer: Low-Level API vs. High-Level Library

47

Authentication / Authorization

Assumption is that ingestion clients run behind firewall and that authentication is not required (e.g.,
similar to EPICS infrastructure components). Authentication is required for query clients. Initial
thoughts about how we will handle authentication and authorization in the gRPC service:

• Enable server authentication and secure transport via built in gRPC support for SSL/TLS.

• Create a new "login" gRPC API method in the ingestion (and query) services. The login method
will use the infrastructure LDAP service to authenticate the user credentials. It will return a JSON
web token (JWT) to the caller.

• In subsequent gRPC API calls, the client will attach the JWT token as metadata to the request
header.

• Investigate use of API token authentication for infrastructure applications (not tied to a specific
user).

48

Supplemental Material
• SBIR Project Background
• Ingestion Data Flow Diagram
• Bucket Pattern for Time-Series Data
• DP Deployment
• Example Data Flow
• Why use an API?
• Authentication / Authorization

• Performance Benchmarks
• Application Layer: Low-Level API vs. High-Level Library

49

Project Status
Performance Benchmarks

Final design decisions for Data Platform

• Java – development/performance/deploy

• gRPC – standalone comm. framework
• MongoDB – both time-series and metadata

• HDF5* – reserved for legacy data/performance
50

Benchmark Description Data Rates

Double Values (vals/sec) Bytes (bytes/sec)

gRPC network transmission (Java) 22M – 33M 176M – 264M

Archiving, structured - HDF5 large 68M – 77M 544M – 616M

Archiving, structured - JSON files 38M – 47M 304M – 376M

Archiving, buckets - MongoDB 7M – 11M 56M – 88M

Archiving, buckets - MariaDB 4.5M – 5.5M 36M – 44M

Archiving, structured - HDF5 small 1.3M – 2.4M 10.4M – 19.2M

Archiving, points - InfluxDB 750K – 940K 6M – 7.52M

Archiving, points - MongoDB 360K – 410K 2.88M – 3.28M

Archiving, points - MariaDB 140K – 162K 1.12M – 1.3M

Metadata updates - MongoDB 11K to 36K updates/sec -

Data Platform component evaluation and benchmarking

Redesign of Data Platform required
extensive testing and benchmarking of
existing technologies and methods.
• Performance
• Modularity/dependencies
• Development effort
• Ease of deployment

NOTE: These measurements were obtained with v1.1 and need to be re-measured using v1.5+

Supplemental Material
• SBIR Project Background
• Ingestion Data Flow Diagram
• Bucket Pattern for Time-Series Data
• DP Deployment
• Example Data Flow
• Why use an API?
• Authentication / Authorization
• Performance Benchmarks
• Client Application Communication Options

• gRPC API vs. Client Library
• gRPC API Client
• Java Client Library Ingestion Example
• Java Client Library Query Example

51

Client Application Communication Options
gRPC API vs. Client Library

Applications can be built
at two levels, either using
the lower-level gRPC API
directly or using the
higher-level client library.

Client Application Communication Options
gRPC API Clients

● The low-level gRPC Ingestion and Query Service APIs can be used from a wide
variety of programming languages to build applications.

● The "protoc" compiler generates appropriate code for using the data
structures and invoking procedures defined in the service "proto" API files.

// Create gRPC request message.
IngestionRequest.Builder requestBuilder = IngestionRequest.newBuilder();

// Set event timestamp in request.
Timestamp.Builder snapshotTimestampBuilder = Timestamp.newBuilder();
snapshotTimestampBuilder.setEpochSeconds(params.snapshotTimestampSeconds);
snapshotTimestampBuilder.setNanoseconds(params.snapshotTimestampNanos);
snapshotTimestampBuilder.build();
requestBuilder.setSnapshotTimestamp(snapshotTimestampBuilder);

// Set data in request.
IngestionDataFrame dataFrame = ingestionDataFrameForTable(pvDataTable);
requestBuilder.setIngestionDataFrame(dataFrame);

// Build and send request.
IngestionResponse = blockingStub.ingestData(requestBuilder.build());

Client Application Communication Options
Client Library

● A Java client library provides a high-level data science oriented interface
to the data platform.

● It hides the gRPC API implementation from developers, allowing them to
focus on the application instead of communication details.

Client Application Communication Options
Java Client Library Ingestion Example

// Create interface to streaming ingestion service.
IIngestionStream ingStream = DsIngestionServiceFactory.connectStream();

// Open stream for PV data provider registration.
ingStream.openStream(pvProviderRegistration);

// Create DataFrame from PV table for current interval.
DataFrame dataFrameCurrentInterval = DataFrame.from(pvValueTable);

// Send data frame to ingestion service in current stream.
ingStream.streamData(dataFrameCurrentInterval);

Example: Open streaming connection to Datastore Ingestion Service, create data
frame for current interval, send to service.

Client Application Communication Options
Java Client Library Query Example

Objective: Retrieve PV data from Datastore Repository to
train a machine learning model, or feed data to predictive
ML model embedded in a control application.

Approach: Use Datastore streaming query API to retrieve
latest BPM values for relevant PVs and feed them to ML
model.

/ Create interface to query service.
IQueryServiceData qrySvc = DsQueryServiceFactory.connectData();

// Create query request for relevant PVs starting from now.
qryRequest = qrySvc.newRequest();
qryRequest.rangeAfter(Instant.now()); // or use "rangeBetween" to specify time range
qryRequest.selectPvs(”S01-GCC01", ”S01-GCC02");

// Send query request and invoke callbackFunction with query.
IDataTableDynamic tblResult = qrySvc.requestDataAsync(qryRequest, callbackFunction);

