

Experiment Setup and Data Acquisition and Reduction

Sai Venkatesh Pingali

pingalis@ornl.go

ORNL is managed by UT-Battelle LLC for the US Department of Energy

Experiment Planning

- Useful sample information
 - Particle shape and size
 - Size > 1 nm and < 1 μ m.
 - Particle concentration
 - ► Conc. > 1 mg/mL (1-5)
 - Particle size distribution
 - Gaussian/LogNormal
 - Hierarchical structure
 - Multiple level of structure

Determine Q-range from Particle size or order

- Dilute solutions of particles (biomolecules)
 - Particle shape or form factor
 - Relevant Q=1/R
- Concentrated solution of particles or hierarchical structure
 - Particle order or structure factor (lets call spacing as 'd')
 - Relevant Q= $2\pi/d$
- Q-range should extend both directions of relevant Q

Instrument Configurations

SANS Profiles of Example Biological Systems

lational Laboratory

- Non Structural Protein-15 of Corona Virus
- CNW11 DMPC Nanodisc with contrast matched DMPC
- POPE Lipid Vesicles (~50 nm diameter)
- Plant cell wall hierarchical structure

Simulate System Prior to Experiment

- Simulator in Data Acquisition System
- Provides a rough expectation of sample scattering
- Overall benefits are
 - Optimal Q-range (in other words set of configurations)
 - Predicts scattering intensity and helps determine good concentration range
 - Optimization of Q_{min} (or sample aperture size and beam trap size)

Data Acquisition

- Opening EPICS to show a live demonstration similar to the tutorial videos.
- Tutorial links -
 - Opening control software system (CSS) https://vimeo.com/588440112/161b3c92bc
 - Panel Scan use to setup commands -

https://vimeo.com/588488791/8611f9a5af

- Checking experiment status -

https://vimeo.com/588487424/bcfeaec18e

• Launch Scan Monitor (Applications Menu/Scan/Scan Monitor)

Panel Scan – Setting up Configs

- High Flux: 6Å, 6G, 7m, 350mm, -1.0°, 3.0°
- Intermediate: 6Å, 4G, 7m, 220mm, -2.7°, 7.25°
- Long 6Å: 6Å, 0G, 15.5m, 350mm, -1.0°, 5.5°
- Long 12Å: 12Å, 0G, 15.5m, 350mm, -1.0°, 5.5°
- Long 18Å: 18Å, 0G, 15.5m, 350mm, -1.0°, 5.5°

•		s6v@cg3-dasopi1.ornl.gov - ThinLinc Client	
Activities Applications	s 🔹 🛛 Places 🕶 📫 👩 🗐 💓 🗉	CS-Studio - Mon Mar 15, 23:31:11	+0 O :
		CS-Studio (Phoebus)	
The Applications Minde	ur Hele		
ile Applications windo	и нер		
🕈 🗁 • 🗄 • 🗞			
ANS Panel Scans X			
			70 % 👻 🗢 👻 🔿
SANS Panel Scar	ns		
1. Check Q Setups	2. Select Q Setups 3. Sample Environment De	Kes 4. Load Samples 5. Specify Exposure Time 6. Expand and Submit Table	
Load a standard Q setup:	conf_4guides_7.0m_6.0A_Robot3.2de + Load Reitenh Config	Currar X. 3099	
Note: 1. Source aperture and sample aper 2. All four beam stops are round with	nare (if not specified in comment) both have round oppenings. h different diameters (e.g. 50 mm). They share an X motor.	Curitor Y: poor Curitor PD: 2020	
	Scattering Transmission		
Wavelength (lambda):	6.000 A		
Delta Lambda:	13235300 %	Use default detector center	
Attenuation:	Open • x300 •	Beam center X: 3050	
Number of Guides:	nguides 4 👻	Beam center V: 3050	
Source Aperture Diameter:	40 mm	Beam center PID: 20208	
Source Aperture to Si Window distance	ce: 9791.6329 mm	Beam center into will be used	
Sample Changer:	Undefined v # of slots: 1	to set dynamic/Mapping at run	
Sample Aperture to Si Window distan	cei88.000 mm	8-14.	
Sample to Si Window Distance:	65.000 mm		
Source Ap. to Sample Ap. dis. (SSD):	9.7236 meters meters		
Sample Aperture Diameter:	10.000 mm 10.000		
Sample to Main Detector dis. (SDD)	3: 7.000000 motors	×	
Si Window to Main Detector distance:	6.935000 meters	Results Main Detector Wine Detector Wine Detector	
Main Detector Translation:	1.500 mm	Deam dameter: 57.724 mm 18 pack overlap 1/2 5 pack overlap outtomized overlap	
Need a corresponding transmission	n configuration.	wwfact 39708 dwg 50858 dwg 22000 dwg	
Beam Trap for Q range planning:	BT76-Semitransp *	Owner 0.000 1/4 1/6 0.077 1/8 1/8 0.099 1/8 1/4 0.099 1/8 1/4	
Beam Trap X (in mm):	84,500 mm	Creax edge wert short: 0.075.1/A 1A	
75mm Semtraris Beam Trap Y (in mr	#0.557,000 mm 400.000 mm	Omax edge wet long: 0.080 J/A L/A	
somm beam trap Y (in mm):	10.000 mm 20.000 mm	Omar edue horiz short 007511A 1A 0.95511A 1A 0.95011A 1A 0.8601A 1A	
76mm Beam Trap Y (in mm):	10.000 mm 20.000 mm	Crease educe horiz long: ODE 3/A 1/A	
202mm Beam Trap Y (in mm):	10.000 mm 20.000 mm	Consectore short 010714 1a OL 180: 156 122 194	
	beam center as needed! Calculate	Create correct loop: 0.113 UA UA	
Config.	Delimetry	Auto analysis of the part of t	
Select wwRot angle for:	and metan	2022-03-15-12:3351 MFO Done with Wing Detector 1 8-pack overlap calculation. 2022-03-15-12:3351 MFO Done with Wing Detector 12-8-pack overlap calculation.	
0 1/2 0	B-pack overlap.	2022-03-15 12:2053 mB/O Done with Wing Detector typed angle overlap calculation. 2013: 03-16 13:23:63 mB/O Colon-binder, detector typed angle overlap calculation.	
eust	tomized angle. 3.2000 deg Save Config	2022-03-15-12-34-08 INFO Saving configuration to	
Save for current IPTS-25674		momentary domains / Security Security approximation of the security securit	
		2021-03-15-12-34 08 INFO Savins confearation to	

- Setup of different configuration usually by Local Contact with User
- Remember min-q and sample holder used for your experiment

Panel Scan – Choosing Configs

- Choose # of Configs and Q-setup for each config (max. 4 allowed configs)
- Choose mode of measurement and transmission exposure time for each config
- Define default scattering exposure time that will be applied for all samples

Sample Environments

- Use Peltiers temperature controllers (Unit C). Applications 🗸 🛛 Places 🗸 齝 💿 📰 🗃 💢 🗐 🗖 CS-Studio 🤜 File Applications Window 🟫 🍉 🔹 🗄 🔹 😵 ✓ Use Arroyo Peltier SANS Panel Scans × Scan Monitor Use PolyScience chiller (Unit C). Sample Environment Device(s) 🖌 Use Arrayo Pe Use PolyScience chiller (Unit: C) Use Lakeshore 336 (Unit: K) Use Lakeshore 336 (Unit: K). Use Dilution Fridge (Unit K) Use Tumbler (Unit: RPM) Use HPLC Use ramp Use Dilution Fridge (Unit: K). Done Editing D Done Configuring Device(s) Use Tumbler (Unit: RPM). Use HPLC Use ramp rate. Use other device combination (pre-measurement): Use other device combination (post-measurement): Use equilibration time (hold time; unit: seconds):
- Select appropriate sample environment
- Fill Table with appropriate values for parameters like temperature.

CAK RIDGE National Laboratory

Samples

•	• •	s6v@cg3-dasopi1.ornl.gov - ThinLinc Client	
-	Activities Applications - Places - 🍋	n 💿 📓 🗱 💽 🗖 CS-Studio 🗸 Mon Mar 15, 23:32:20	#0 © √≏
		CS-Studio (Phoebus)	_ = ×
Fi	le Applications Window Help		
1			
SA	NS Panel Scans ×		
			70 % 👻 🗢 👻
4	SANS Panel Scans		
	1. Check Q Setups 2. Select Q Setups	3. Sample Environment Devices 4. Load Samples 5. Specify Exposure Time 6. Expand and Submit Table	
2	(for reference) Sample ID: 1 Sample Name: No sample		
F.	Sample Changer Default Positions to Use: 1-2	Edit Positions to Use: 1-3	
	Vuse Robot	Robot_Set Sample_Title Sample_Thickness_mm Sample_Type Robot_Return	
	ITEMS IDs	1 MT Beam - Open Beam 1 2 MT Cell 1 Emoty Cell	
H	✓ Tife	3 Porasi 83 Sample	
	Background (e.g. "##e within an experiment; run¥ 1; run¥ 2")	Cick to and row	
H	Sample thickness		
H	Composition: protein (or polymer)		
	Composition concentration		
	Solvent		
F.	Solvent radio		
	Salt		
	Salt concentration		
H	✓ Sample type (Sample/Background/Empty Cell/Open Beam)		
	Comment		
	Cone Configuring Sample Related Columns	Borde, sading Sample Details	
		2021-0315 13364.1 NFO Annawa: Reading Nonextoneoloffice/P15/09/0975-2587Noord (apaket, 7.0m, 5.0A, Voj. 3.2beg, tantaar 2021-0315 13936.6 NFO Annawa: Reading Nonextoneoloffice/P15/09/0975-2587Noord (apaket, 7.0m, 5.0A, Voj. 3.2beg, tantaar 2021-0315 13936.5 NFO Annawa: Reading Nonextoneoloffice/P15/09/0975-2587Noord (apaket, 7.0m, 5.0A, Voj. 3.2beg, tantaar 2021-0315 139365.0 NFO Annawa: Reading Nonextoneoloffice/P15/09/0975-2587Noord (apaket, 7.0m, 5.0A, Voj. 3.2beg, tantaar 2021-0315 1393757NO Datange une HTT convention(1); 311111130 2021-0315 1393777NO Datange une HTT convention(1); 311111130 2021-0315 1393777NO Datange une HTT convention(1); 311111130	

- Select sample environment and number of positions
- Select appropriate descriptives to be stored as metadata
- Populate Table with sample information for the appropriate sample position.
- Preferably measure backgrounds prior to samples.

Sample Details for Meta data

 Choose those that apply for your sample and can help with auto-reduction

for reference) Sample ID: -1 Sample Name: No samp	ble		
✓ Sample Changer Default Positions to Use: 1-2	Edi	t Positions to Use: 1-3	
✓ Use Robot	Robot_Set	Sample_Title	Sample_Thicknes
ITEMS IDs	1	MT Beam	
-	2	MT Cell	1
Title	3	Porasil B3	
Background (e.g. "title within an experiment; run# 1; run# 2")	Click to add row		
✓ Sample thickness			
Composition: protein (or polymer)			
Composition concentration			
Solvent			
Solvent ratio			
Salt			
Salt concentration			
✓ Sample type (Sample/Background/Empty Cell/Open Beam)			
2			

*CAK RIDGE CENTER FOR STRUCTURAL MOLECULAR BIOLOGY

Exposure Times

- Each sample is automatically assigned default exposure time
- Edit exposure times for those samples that differ from default (last column)
- This is the exposure time for Only scattering or Both together measurements
- Transmission and default scattering exposure times were defined in Tab 2

Final List of Commands

•				s6v@cg3-dasop	pi1.ornl.gov	- ThinLinc Clie	nt								
ctivities Applications -	Places 👻 🍅	💿 🖹 🗃 🗱 🗔 🗖	CS-Studio 🛨	Mon	Mar 15, 23	:33:48									40)
				CS-S	Studio (Pho	ebus)									-
Applications Window	Help														
😕 🔹 🗄 💌 😤															
C Decel Course M															
s Panel Scans ×															
													70 %	• •	
ANS Panel Scans															
1. Check Q Setups	2. Select Q Setups	3. Sample Environment Devices	4. Load Samples	5. Specify Expos	ure Time	6. Expand and 5	Submit Table								
xpand Order:	in fact and a solution														
Sample env settings, Q setups (scatteri Sample env settings, Q setups (transmi	ssion first), sample positions							Expand/Net	w Table			Undo Expand			
Q setups (scattering first), sample envis O setups (transmission first), sample en	ettings, sample positions. In settings, sample positions.							Expandiá	innent						
Sample positions, Q setups (scattering)	first), sample env settings.							copartary	pperio						
Sample env settings, sample positions,	Q setups (scattering first).														
Title		Config_Path		Measure_Type	Robot_Set	Sample_Title	Sample_Thickness_mm	Sample_Type	ar_pelt	Wait For	Value	Robot_Return			
anel Scan 1 of 6, smpl: MT Beam	/home/controls/files/IP	TS/490/IPTS-25674/conf_4guides_7.0	0m_6.0A_VG_3.2deg_scatt.sav	Both	1	MT Beam		Open Beam	25	seconds	1800.0	1			
anel Scan 2 of 6, smpl: MT Cell	/home/controls/files/IP	TS/490/IPTS-25674/conf_4guides_7.0	0m_6.0A_VG_3.2deg_scatt.sav	Both	2	MT Cell	1	Empty Cell	25	seconds	1800.0	1			
Panel Scan 3 of 6, smpl: Porasil B3	/home/controls/files/IP1	TS/490/IPTS-25674/conf_4guides_7.0	0m_6.0A_VG_3.2deg_scatt.sav	Both	3	Porasil B3	1	Sample	25	seconds	1800.0	1			
Panel Scan 4 of 6, smpl: MT Beam	/home/controls/Nes/IP	TS/4901PTS-25674/cont_4guides_7.0 TS/4901PTS-25674/cont_4guides_7.0	m_6.0A_VG_3.2deg_scatt.sav	Both	2	MT Gell	1	Emoty Cell	50	seconds	1800.0	1			
Panel Scan 6 of 6 smol: Porasil R3	/homeicontrols/lies/IP	TS/490/PTS-25674/conf_Aquides_7/	m 6.0A VG 3.2den scatt sav	Both	3	Porasil R3	1	Sample	50	seconds	1800.0	1			
Inset				Undefined		Undefined		Undefined							
Click to add row															
021-03-15 19:36:43 NFO Autosave: Read 021-03-15 19:36:43 NFO Autosave: Read	ting /home/controls/tiles/IPTS/4 ting /home/controls/tiles/IPTS/4	90/1PTS-25674/conf_4guides_7.0m_6.0/ 90/1PTS-25674/conf_4guides_7.0m_6.0/	<pre>%_VG_3.2deg_scat.sav %_VG_3.2deg_trans.sav</pre>				TOTAL MOWS: 8	Submit/Seperat	le Scan Jobs	1		Simulate			
221-03-15 19:36:55 NFO Stating new H1 021-03-15 19:36:55 NFO Autosave: Read	ing /home/controls/lies/IPTS/4 ing /home/controls/lies/IPTS/4	1901PTS-25674/conf_4guides_7.0m_6.0/ 1901PTS-25674/conf_4guides_7.0m_6.0/	VG_3.2deg_scatt.sav				Delay Sum: 0.00	Submit/One:	Scan Job		S	ave Table File			
121-03-15 19:37:07 NFO Starting new HT 121-03-15 19:37:07 NFO Starting new HT	TP connection (1): 10.111.113 TP connection (1): 10.111.113	1130					20800.00	Table file name:	/SNSAction	s/g3n/Deskton	ischedule2	1054c.csv			
121.03.15 19:32:07 NEO Submit Expand	And Submit Table as Separate	Scans. Complete.													
21.03.15 22.17:09 NEO Generale Even	rd and Submit Table Beninning														

- Compiles all details; Check all entries here
- Except configs, almost all entries can be edited, if required
- Order of measurement can also be modified, including deletion of row(s)
- When ready, SUBMIT table for execution to general list of commands

Dashboard

BT is Blocking

Blocking

- Shows live status of instrument
 - Scan and Run
 - All Motors
 - Detector counts and 2D images
 - If require can initiate diagnostic collection of data (mostly not used by users)

Scan Monitor

- List of commands as submitted by Panel Scan
- The order of commands can be changed, but not the details for each command.

 ● ● ●
 s6v@cg3-dasopi1.ornl.gov - ThinLinc Client

 ● ● ● ●
 ●

 ● ● ● ●
 ●

 ● ● ● ●
 ●

 ● ● ● ●
 ●

 ● ● ● ●
 ●

 ● ● ● ●
 ●

 ● ● ● ●
 ●

 ● ● ● ●
 ●

 ● ● ● ●
 ●

 ● ● ● ●
 ●

 ● ● ● ●
 ●

 ● ● ● ●
 ●

 ● ● ● ●
 ●

 ● ● ● ●
 ●

 ● ● ● ●
 ●

 ● ● ● ●
 ●

 ● ● ● ●
 ●

 ● ● ● ●
 ●

 ● ● ● ●
 ●

 ● ● ● ●
 ●

 ● ● ● ●
 ●

 ● ● ● ●
 ●

 ● ● ● ●
 ●

 ● ● ● ●
 ●

 ● ● ● ●
 ●

 ● ● ● ●
 ●

 ● ● ● ●
 ●

 ● ● ● ●
 ●

 ● ● ● ●
 ●

 ● ● ● ●
 ●

 ● ● ● ● ●
 ●

 ● ● ● ● ●
 ●

 ● ● ● ●
 ●

File Applications Window Help

🕋 🗁 🔻 🖪 👻 😤

SANS Panel Scans × CG3 Dashboard × PolyScience Chiller × IPTS, ITEMS × SANS Q Planner × Scan Monitor ×

ID	Created	Name	S	tate %	Runtime	Finish	Command
10412	2021-08-30	Panel Scan 15 of 18, smpl: MYB-THF-130C	Logged		0 ms	?	
10411	2021-08-29	Panel Scan 14 of 18, smpl: MYB-DA-160C-10min	Logged		0 ms	?	
10410	2021-08-29	Panel Scan 13 of 18, smpl: MYB-DA-150C	Logged		0 ms	?	
10409	2021-08-29	Panel Scan 12 of 18, smpl: MYB-ETOH-170C	Logged		0 ms	?	
10408	2021-08-29	Panel Scan 11 of 18, smpl: MYB-ETOH-130C	Logged		0 ms	?	
10407	2021-08-29	Panel Scan 10 of 18, smpl: MYB-THF-140C-10min	Logged		0 ms	?	
10406	2021-08-29	Panel Scan 9 of 18, smpl: MYB-THF-130C	Logged		0 ms	?	
10405	2021-08-29	Panel Scan 8 of 18, smpl: MYB-DA-160C-10min	Logged		0 ms	?	
10404	2021-08-29	Panel Scan 7 of 18, smpl: MYB-DA-150C	Logged		0 ms	?	
10403	2021-08-29	Panel Scan 6 of 18, smpl: MYB-ETOH-170C	Logged		0 ms	?	
10402	2021-08-29	Panel Scan 5 of 18, smpl: MYB-ETOH-130C	Logged		0 ms	?	
10401	2021-08-29	Panel Scan 4 of 18, smpl: MYB-THF-140C-10min	Logged		0 ms	?	
10400	2021-08-29	Panel Scan 3 of 18, smpl: MYB-THF-130C	Logged		0 ms	?	
10399	2021-08-29	Panel Scan 2 of 18, smpl: MYB-DA-160C-10min	Logged		0 ms	?	
10398	2021-08-29	Panel Scan 1 of 18, smpl: MYB-DA-150C	Logged		0 ms	?	
10397	2021-08-29	Panel Scan Prologue	Logged		0 ms	?	
10396	2021-08-29	Unset	Logged		0 ms	?	
10395	2021-08-29	Panel Scan 12 of 12, smpl: MYB-DA-130C	Logged		0 ms	?	
10394	2021-08-29	Panel Scan 11 of 12, smpl: COMT-ETOH-180C-1min	Logged		0 ms	?	
10393	2021-08-29	Panel Scan 10 of 12, smpl: COMT-ETOH-170C	Logged		0 ms	?	
10392	2021-08-29	Panel Scan 9 of 12, smpl: COMT-ETOH-130C	Logged		0 ms	?	
10391	2021-08-29	Panel Scan 8 of 12, smpl: MYB-DA-130C	Logged		0 ms	?	
10390	2021-08-29	Panel Scan 7 of 12, smpl: COMT-ETOH-180C-1min	Logged		0 ms	?	
10389	2021-08-29	Panel Scan 6 of 12, smpl: COMT-ETOH-170C	Logged		0 ms	?	
10388	2021-08-29	Panel Scan 5 of 12, smpl: COMT-ETOH-130C	Logged		0 ms	?	
10387	2021-08-29	Panel Scan 4 of 12, smpl: MYB-DA-130C	Logged		0 ms	?	
10386	2021-08-29	Panel Scan 3 of 12, smpl: COMT-ETOH-180C-1min	Logged		0 ms	?	
10385	2021-08-29	Panel Scan 2 of 12, smpl: COMT-ETOH-170C	Logged		0 ms	?	
10384	2021-08-29	Panel Scan 1 of 12 smpl· COMT-FTOH-130C	Logged	E.	0 ms	?	

Scan Server Heap: 189.5 / 3072.0 MB (6.2 %), Non-Heap: 34.5 MB

Jupyter Script Template

User Input for NON-TimeSlice Single Configuration

```
1 # DO NOT CHANGE IF Non-TimeSlice Experiments
                         = 11
   sample identifier
 4 # Config = 1 for 2.25m 6A;
 5 # Config = 2 for 7m 6A;
 6 # Config = 3 for 15.5m 6A;
 7 # Config = 4 for 15.5m 12A;
 8 # Config = 5 for 15.5m 18A;
 9 # Enter a number that represents the config you are reducing
10 Config
                          = 3
11
12 #Enter your Choice of names for Output Files -- For example ['AgBeh', 'Water']
13 sample names
                        = ['AgBeh', 'PorB3', 'Water']
14
15 # Enter sample thickness in cm units.
16 # If all samples have same sample thickness, enter once ['0.1'];
17 # DO NOT REPEAT the same sample thickness value multiple times.
18 sample_thick
                         = ['0.2'] + ['0.1']*2
19
20 # Enter the list of runs for 'sample scattering' in the order set by 'sample_names'.
                       = ['16571', '16572', '16573']
21 samples
22
23 # Enter the list of runs for 'sample transmission'. Enter [''] if same as 'sample scattering'
24 samples trans
                       = ['']
25
26 # Enter the list of runs for 'background scattering' in order set by 'sample names'.
27 # Also, if background is same for all samples, enter once;
28 # DO NOT REPEAT the same run number multiple times.
                        = ['16570']
29 backgrounds
30
31 # Enter the list of runs for 'background transmission'. Enter [''] if same as 'background scattering'
32 backgrounds trans = ['']
33
34 # Enter Beam Center (i.e., empty beam transmission) measured in your experiment.
35 # To use the default beam center (measured during calibration), Enter ''.
                         = '16568'
36 beam center
37
38 # Enter Empty Beam (i.e., empty beam scattering) measured in your experiment.
39 # To use the default Empty Beam Transmission (measured during calibration), Enter ''.
40 empty_trans
                        = '16569'
41
42 # Default is to start index at 1; DO NOT START FROM 'ZERO'
43 # For reducing a subset of the total range, Enter the index of the initial sample to reduce
44 start_index
                          = 1
45
46 # Default is 'len(samples)'
47 # For reducing a subset of the total range, Enter the index of the end sample to reduce
48 end_index
                        = len(samples)
49
50 # Setup once at the beginning of the experiment
51 # Your IPTS, will be used for output directory
52 IPTS_Number
                         = '27401'
53
54 # Enter your UCAMS/XCAMS UserID
55 User3LetInitial
                          = 's6v'
56
57 # Option to overwrite existing data or create another folder (Default is 'True')
58 overWrite
                          = True
```

18

Instrument Scientist or Local contact input below (And Expert Users)

Jupyter Script Template

•	Configs (1-5) 1. Shortest 6Å, 6G, 2.25m 2. Intermediate 6Å, 4G, 7m 3. Long 6Å, 0G, 15.5m 4. X Long 12Å, 0G, 15.5m 5. XX Long 18Å, 0G, 15.5m	1 2 3 4 5 6 7 8 9 11	<pre># D0 NOT CHANGE IF Non-TimeSlice Experiments sample_identifier = '' # Config = 1 for 2.25m 6A; # Config = 2 for 7m 6A; # Config = 3 for 15.5m 6A; # Config = 4 for 15.5m 12A; # Config = 5 for 15.5m 18A; # Enter a number that represents the config you are reduc: Config = 3</pre>
•	 Sample names and thickness For multiple samples, names in 'quotes' and separated by 'commas' Express thickness in 'cm' units 	12 11 14 15 16 17 10 19 20 21	<pre>#Enter your Choice of names for Output Files For examp sample_names = ['AgBeh', 'PorB3', 'Water'] # Enter sample thickness in cm units. # If all samples have same sample thickness, enter once [# DO NOT REPEAT the same sample thickness value multiple sample_thick = ['0.2'] + ['0.1']*2 # Enter the list of runs for 'sample scattering' in the or samples = ['16571', '16572', '16573']</pre>
•	 Follow 'sample name' order Multi-sample reduction- each run number in 'quotes' are comma-separated - ['16571', '16572', '16573'] Addition of multiple runs of a sample- comma-separated in 'quotes' - ['16569,16571', '16573,16574'] For scattering=transmission, leave it empty - [''] 	22 23 25 26 27 28 29 30 31 32 33	<pre># Enter the list of runs for 'sample transmission'. Enter samples_trans = [''] # Enter the list of runs for 'background scattering' in of # Also, if background is same for all samples, enter once, # DO NOT REPEAT the same run number multiple times. backgrounds = ['16570'] # Enter the list of runs for 'background transmission'. Enter backgrounds_trans = ['']</pre>

User Input for NON-TimeSlice Single Configuratio

Jupyter Script Template	<pre>23 # Enter the list of runs for 'sample transmission'. Ente 24 samples_trans = ['']</pre>
 Background Scattering/Transmission run numbers If background scattering is the same for all samples, like 'Empty Cell', just list it once even if you have multiple samples listed above. 	<pre>25 26 # Enter the list of runs for 'background scattering' in 27 # Also, if background is same for all samples, enter onc 28 # D0 NOT REPEAT the same run number multiple times. 29 backgrounds = ['16570'] 30 31 # Enter the list of runs for 'background transmission'. 32 backgrounds trans = ['']</pre>
 If background transmission is the same as background scattering, leave it empty - ['']. 	<pre>33 34 # Enter Beam Center (i.e., empty beam transmission) meas 35 # To use the default beam center (measured during calibr 30 beam_center = '16568'</pre>
 Beam center & Empty Cell A single run number for each; not a list (no square brackets) 	<pre>37 38 # Enter Empty Beam (i.e., empty beam scattering) measure 39 # To use the default Empty Beam Transmission (measured d 41 empty_trans = '16569' 41</pre>
Start and End Index	42 42 43 # For reducing a subset of the total range, Enter the in 44 start_index = 1
 Currently the entire list will be reduced Change to reduce a subset of the entire list, no need to edit the lists above. 	<pre>46 # Default is 'len(samples)' 47 # For reducing a subset of the total range, Enter the in end_index = len(samples) 49</pre>
IPTS Number	50 # Setup once at the beginning of the experiment 51 # Your IPTS, will be used for output directory IPTS_Number = '27401' 53
 Your beam time proposal number 	54 <i># Enter your UCAMS/XCAMS UserID</i> User3LetInitial = 's6v' 56
 User3LetInitial 'Alpha numerals' for your folder name 	57# Option to overwrite existing data or create another fo58overWrite= True

Instrument Scientist or Local contact input below

Actional Laboratory

Data Reduction and Retrieval

- Jupyter Notebook is our choice of data reduction environment.
- Ask Local Contact for Template Script.
- Script accesses raw data stored in the cluster.
- Reduced data is stored in the cluster too.
- Output of the reduction script stores data in the cluster.
- FTP Software is used to transfer data from cluster to local machine.
- Jupyter Notebook- <u>https://jupyter.sns.gov</u>
- Analysis Cluster-<u>https://analysis.sns.gov</u>

Facility Acknowledgment Statement

- A portion of neutron scattering research presented as examples in this introduction used resources at the High Flux Isotope Reactor or Spallation Neutron Source, DOE Office of Science User Facilities, operated by the Oak Ridge National Laboratory.
- The Bio-SANS of the Center for Structural Molecular Biology at the High Flux Isotope Reactor is supported by the Office of Biological and Environmental Research of the U.S. DOE.

