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The speedy evolution of Al & ML

In healthcare:

Medical image analysis
Predictive analytics
Robot-assisted surgery
Clinical decision support
Remote monitoring

elc.

°

in finance:

Risk assessment
Fraud detection
Algorithmic trading
Personalized financial
advice
etc.
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Natural language Al

Al

Language translation
Virtual assistants
Chatbots

Social media monitoring

Document analysis
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in transportation:

Self-driving vehicles
Pedestrian detection
Traffic optimization
Road condition
monitoring

Parking management
elec
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o Al has numerous applications in various industries. As Al
continues to advance, it has the potential to revolutionize

many aspects of society and our daily lives.
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Beyond Moore come quantum materials!
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Moore’s Law: The number of transistors on microchips doubles every two years [SgWVt 1 3
Moore's law describes the empirical regularity that the number of transistors on integrated circuits doubles approximately every two years. in Data
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Challenges in developing Al & ML

Slide from Satoru Nakatsuji, U.Tokyo Trans Scale Quantum Institute

Future Bottlenecks

Opportunities

Data center energy consumption per year
Sensitivity analysis (10,000 replications) - All scenarios

Artificial intelligence (Al) market size worldwide in 2021 with a forecast until 2030 (in 1400
million U.S. dollars)
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The market size of Al
is expected to grow
exponentially in the

coming decade

Annual electricity consumption (TWh)

Year

Fig. 7. Effect of both Industrial IoT and Moore’s law on data center electricity consumption.

Al and ML put significantly increas.ing demands on computing resources,
leading to the exponential growth in the data center energy consumption.

Source: J. Sevilla et al., “Compute Trends Across Three Eras of Machine Learning,” 2022 International Joint Conference on Neural Networks (IJCNN)
M. Koot and F. Wijnhoven, “Usage impact on data center electricity needs: A system dynamic forecasting model ,” Applied Energy (2021)



Achieving ultrafast magnetic memory with topological antiferromagnets

Slide from Satoru Nakatsuji, U.Tokyo Trans Scale Quantum Institute
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The STS will be key to sustainable information technologies

and to ensuring US scientific and technological
competitiveness in the post Moore era




Accelerated discovery of new quantum materials functionality

= Motivation

o CMP and technology is built on exploration of materials space

o Must optimize quantum collective properties that can defy modelling
= Unique role of STS

o Collective dynamics and magnetic structure for powder, crystal, films

o Enable science at new extremes of external fields and pressure

o Data quality and volume to benchmark dynamic modelling and train Al
= Transformative Science

o Discover solid state spin liquids supporting coherent quasi-particles

o Realize interface functionality

o Discover non-linear responses for neuromorphic Al



Imaging entanglement and coherence in solids

* Motivation
o Device realizable solid state quantum sensing
o Topologically protected quantum computing

* Unique role of STS

o High fidelity Q-resolved spectral analysis
o Unprecedented coherence, resolution, and polarization

* Transformative Science
o Accessing the quantum classical cross over in spin liquid compounds
o Model-independent solid state entanglement witnesses
o Noise spectroscopy with coherent neutrons to probe higher order correlations



Harnessing intertwined states of matter

* Motivation
o Intertwined orders are pervasive in quantum materials
o Key to developing novel electronic functionalities
* Unique role of STS
o Access to low energy excitations associated with intertwined orders
o Structural probes of magnetism in thin film forms
o Map phase space versus extreme conditions of field and pressure

e Transformative Science

o Magnetic order in nickelates that can only be synthesizes in thin films
o Expose Intertwined order at high pressure or high fields



Driven quantum materials

* Motivation

o Time periodic driven systems can realize new functionality

o Interface materials where functionality is driven by hetero-structuring
* Unique role of STS

o Momentum resolved dynamics over 9 orders of magnitude of energy

o Structure and dynamics at buried interfaces in engineered structures
* Transformative Science

o Probing the THz dynamics of switching AFM domains
o Probing idealized spin liquid induced by time periodic drive



Priority Research Directions in Quantum

Materials at the Second Target Station

1. Discover quantum materials that approach fundamental limits for
Information and energy technologies

2. Advance fundamental understanding of quantum coherent and
Incoherent dynamics in materials platforms

3. Unvell intertwined electronic orders in guantum materials

4. Harness coupling between transport and mesoscopic structures
and dynamics in driven guantum materials and devices

The STS will be key to sustainable information technologies

and to ensuring US scientific and technological
competitiveness in the post Moore era




Seeking your feedback:

*\WWhat science was missed

*Questions to clarify proposed science
*Questions to clarify proposed experiments
*What areas are unrealistic or not compelling

*What technical development work is needed



New Science Opportunities at the SNS STS

* BWAVES - broadband spectrometer AI P Review of Scientific Instruments
 CENTAUR - SANS/WANS

* CHESS - cold neutron spectrometer
CUPI?D - neutron imaging
EXPANSE - wide-angle neutron spin echo

EWALD — macromolecular single-crystal Diffractometer

MENUS — Multi-modal engineering materials beamline for complex materials

M-STAR - Polarized reflectometer optimized for magnetism
PIONEER —single-crystal diffractometer
TITAN — Extreme environments multi-modal instrument

* QIKR - kinetics reflectometer
* VERDI - polarized diffractometer

https://pubs.aip.org/rsi/collection/1617/New-Science-Opportunities-at-the-Spallation



CHESS: New era of quantum materials spectroscopy
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EXPANSE: The extreme quantum regime

correlation length (A)
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Pioneer: Magnetic structures in crystals and thin films
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VERDI: Magnetic structures in powders
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Transforming quantum materials science through
high field neutron scattering
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Consensus Study Report

Key Recommendation 6: The United States must establish its leading role

in the combination of high-magnetic-field studies with X-ray free lasers
(XFELs), synchrotrons, and neutron sources. This could best be accom-
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MSTAR: Probing driven quantum materials

M-STAR Instrument Layout Concept
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