

Preliminary QIKR Motion Design Review Sample/Detector Table Details

Rudy Thermer, Motion Engineer

November 06, 2024

ORNL is managed by UT-Battelle, LLC for the US Department of Energy

Outline

- Sample/ Detector Table Requirements
- Design Details
- DACs

Detector Table Requirements

- S.04.08.06-R125 The detector table must place the center of the detector sensing surface at a fixed radial distance 2m ± 1mm from the nominal sample location.
 - The detector face of the current placeholder model is located a nominal distance of 2m from the sample center location, and can be adjusted within a range of 25mm (1") to within 50µm. When the final design of the detector is known, the nominal distance will be corrected as needed.
- S.04.08.06-R126 The detector table must have a footprint in X of \leq 765 mm.
 - The detector & sample table are 475.8mm wide. The detector arms are 375.1mm wide.
- S.04.08.06-R127 The detector table must be able to support at least ≥227 kg (≥500 lbs) in addition to its own weight.
 - The detector table can support 306kg (674lbs) applied at the downstream edge of the table.
- S.04.08.06-R130 The detector table must provide <u>+</u>17.5° of remote rotation about the X-axis with motion resolution of .002°. *Note: Angle measured from horizontal. This angle range provides at least* +15° *of rotation about the QIKR-A and QIKR-B beam inclinations of* 2.5° *and* -2.5° *respectively.*
 - The detector arms rotate through a range of $\pm 17^{\circ}$ measured from horizontal with a resolution of $1.1(10)^{-4}$ degrees/ full step.

Detector Table Requirements

- S.04.08.06-R131 The detector table must provide ≥15° degrees of remote rotation toward the user about the Y-axis with motion resolution of ±.002°.
 - The detector provides 17° of rotation about the Y-axis through the sample center with a resolution of $6.8(10)^{-4}$ degrees/ full step.

Sample Table Requirements

- S.04.08.06-R116 The sample table must have a footprint in X of \leq 765 mm.
 - The detector & sample table are 475.8mm wide.
- S.04.08.06-R117 The sample table must be able to support at least ≥455 kg (≥1000 lbs) in addition to its own weight. *Note: Sample environments are expected to weight under 500lbs.*
 - The sample table can support 510kg (1,124lbs) applied at the downstream edge of the table.
- S.04.08.06-R118 The sample table must provide coarse positioning of the sample to one of three nominal Y locations to within <u>+</u>.1mm. The Y locations correspond to the height of the three beam components of interest at the nominal sample 'z' distance from the guide end.
 - The sample table has a vertical motion range of 150mm to cover a distance of 105mm between lowest and highest sample positions. Currently, when the sample table sits at its lowest position, its surface sits below the lowest sample position by 560mm. Motion resolution is 1.25(10)⁻³mm/ full motor step.

Detector/Sample Table – Overview

Sample Table – Rotary Table Installation

Sample Table – Installation Sequence & Subassemblies

Sample Table – Post-Manufacturing for Wire Race Ways

Sample-Installation Sequence & Subassemblies

Sample Table – Installation Sequence & Subassemblies

11

Sample Table – Installation Sequence & Subassemblies

Sample Table – Costs and Manufacturing Plan

Sample Table – Column Guides Calculations

Linear bushings

CAK RIDGE

National Laboratory

14

$$\begin{split} F_{PL,DA} &= 3000 \, N, \, l_{PL,DA} = 1.941 \, m \\ F_{DW,DA} &= 1455 \, N, \, l_{DW,DA} = 0.509 \, m \\ F_{PL,ST} &= 5000 \, N, \, l_{PL,ST} = 0.555 \, m \\ F_{DW,ST} &= 1800 \, N, \, l_{DW,ST} = 0.486 \, m \\ F_1 &= F_2 = ?, \, l_1 = l_2 = 0.154 \, m \end{split}$$

Payload detector arm Dead weight force detector arm Payload sample table Dead weight force sample table (moving part) Reaction forces upper and lower bushing

(R127: ≧227kg)

(R117: ≧455kg)

Guide Column

To find the two forces F1 and F2, we need the following system of equations:

 $F_{PL,DA} \cdot l_{PL,DA} + F_{DW,DA} \cdot l_{DW,DA} - F_{PL,ST} \cdot l_{PL,ST} - F_{DW,ST} \cdot l_{DW,ST}$

$-F_1 \cdot l_1 - F_2 \cdot l_2 = 0$	(1)
$\frac{F_1}{F_2} = \frac{l_2}{l_1}$	(2)

We have an even force distribution on the ball bushings if $l_1 = l_2$, thus $F_1 = F_2$. In this case, we simply obtain

 $F_{1} = F_{2} = \frac{F_{PL,DA} \cdot l_{PL,DA} + F_{DW,DA} \cdot l_{DW,DA} - F_{PL,ST} \cdot l_{PL,ST} - F_{DW,ST} \cdot l_{DW,ST}}{2 \cdot l_{1}}$

$F_1 = 9.5 \ kN$

The manufacturer BOSCH REXROTH specifies a dynamic and static load rating of **23.5 kN** and **18.700 kN** respectively.

The dynamic load rating of 23.5 kN is based on a travel distance of **100 km** (see next slide).

Sample Table – Column Guides Calculations

page 86

Super @ (closed)

R0732

15

Super @ (closed)

CAK RIDGE National Laboratory

R0733

Super I (open)

The load ratings C and Co apply for the load direction $\rho = 0^{\circ}$. For all other load directions, the load ratings must be multiplied by the factors fo (dynamic load rating) or f_{ρ_0} (static load rating C_0).

Reduced load rating with short stroke

When short stroke is present, the service life of the shaft is less than that of the super linear bushing. The load ratings C in the tables must therefore be multiplied by the factor fw.

Reduced load rating with heavy load The load rating is reduced under heavy load F. The dynamic load rating must be multiplied by the load factor f

Super linear bushings SH Dimensions

Linear bushings | R999000488 (2015-02)

Bosch Rexroth AG 85

1) Holes at center of dimension C

2) Minimum size in relation to Ø d

3) The load ratings apply for the main load direction

The dynamic load ratings are based on a total travel of 100,000 m. When based on 50,000 m, the C values in the table are multiplied by 1,26.

A Refer to the diagrams on page 78 for load in the direction of opening.

Sample Table – Column Guides Calculations

Column Guide Deflection

CAK RIDGE

Sample Table – Lifting Stage Actuator Calculations

Critical buckling force of the screws

ZIMM Product Catalogue 2021 p.162

Conservative assumption: unguided case

17

The ZIMM Group's various lifting screw sizes have been designed for different load ranges. For a given spindle length and load, the appropriate spindle diameter can be determined using the ZIMM calculation sheet.

A) Lift Screw

$F_{PL,DA} = 3000 N$
$F_{DW,DA} = 1455 N$
$F_{PL,ST} = 5000 N$
$F_{DW,ST} = 1800 N$
$F_{tot, lift} = F_{PL,DA} + F_{DW,DA} + F_{PL,ST} + F_{DW,ST} = 11255 N$
$l_{lift, scr} = 225 mm$
$E = 210000 N/mm^2$
v = 3

Payload detector arm $(R127: \geq 227kg)$ Dead weight detector armPayload sample table $(R117: \geq 455 kg)$ Dead weight sample table (moving part)Total weight force acting on vertical spindleFree screw lengthE - modulusSafety factorSafety factor

Thus, we obtain for the 2nd moment of inertia

$$I = \frac{F_{tot, \, lift} \cdot v \cdot 4 \cdot l_{lift, \, scr}^2}{\pi^2 \cdot E} = \frac{11255 \, N \cdot 3 \cdot 4 \cdot (225 \, mm)^2}{\pi^2 \cdot 210000 \, N/mm^2} = 3299 \, mm^4$$

and the minimum core diameter of the screw

$$d = \sqrt[4]{\frac{I \cdot 64}{\pi}} = \sqrt[4]{\frac{3299 \ mm^4 \cdot 64}{\pi}} = \underline{16.1 \ mm}$$

Screw Jack Series	GSZ-2	ZE-5	ZE-10	ZE-25	ZE-35/50
Trapezoidal screw Tr	16x4	18x4	20x4	30x6	40x7
Core-Ø in mm (minimum)	10,9	12,9	14,9	22,1	31
Ball screw KGT Ømm	16	16	25	32	40
Core-Ø in mm (minimum*)	12,9	12,9	21,5	27,3	34,1

Sample Table – Lifting Stage Actuator Calculations

REV

DESCRIPTION

DATE

APVD

ZIMM jack screw systems

35kN-40×7-R-Trapezoidal Screw

Nanotec hybrid stepper motor

ST8918L6708-B – STEPPER MOTOR – NEMA 34

Size:	35 kN
Nominal speed:	1500 rpm
Max. drive shaft speed:	1800 rpm
Screw size standard:	40x7
Housing material:	GGG-50, corrosion-resistant
Worm shaft:	Steel, case-hardened, ground
Weight of screw jack body:	95 kg
Weight of screw/m:	8 kg
Gearbox lubrication:	Synthetic fluid grease
Screw lubrication:	Grease lubrication
Gearbox operating temperature:	max. 60°, higher on request
Moment of inertia:	N: 0.97 kg cm ² / L: 0.67 kg cm ²
Input torque (at 1500 rpm):	max. 19.8 Nm (N) / max. 9 Nm (L)
Drive-through torque:	max. 130 Nm
Screw:	Rotating (R)

Standard configuration

Code	Gearbox (series)	Size	Version (variant)	Ratio	Screw	Stroke per drive shaft rotation
ZE-35-RN	75	25	5 R (rotating screw)	N (normal) 7:1	T: 40.7	1,00 mm
ZE-35-RL	ZE	35		L (low) 28:1	1r 40x7	0,25 mm

±0.1

ANGLE ±30'

SIGNATURE

DATE

ST8918L6708-B

18

ST8918L6708-B

Sample Table – Lifting Stage Actuator Calculations

Necessary drive torque

ZIMM 35kN-40×7-R-Trapezoidal Screw

$$\begin{split} F_{tot, \, lift} &= F_{PL,DA} + F_{DW,DA} + F_{PL,ST} + F_{DW,ST} = 11255 \, N \\ p &= 7 \, mm \\ \eta_{gear} &= 0.52 \\ \eta_{screw} &= 0.35 \\ i &= 28 \\ M_{G,35} &= ? \end{split}$$

Lifting Load (max. payloads + dead weights) Screw pitch Gearbox efficiency (worm gear screw jack) Screw efficiency Gearbox ratio Necessary drive torque

 $M_{G,35} = \frac{F_{tot} \cdot p}{2 \cdot \pi \cdot \eta_{gear} \cdot \eta_{screw} \cdot i} = \frac{11255 \, N \cdot 0.007 \, m}{2 \cdot \pi \cdot 0.52 \cdot 0.35 \cdot 28} = \frac{2.5 \, Nm}{2.5 \, Nm}$

Torque, resolution and speed

19

National Laboratory

Jack screw system efficiencies

Efficiencies of the screw jack $\eta_{Gearbox}$ (without screw)

	rpm	GSZ-2				ZE-35
Ν	3000	0,87	0,81	0,83	0,87	-
Ν	1500	0,87	0,82	0,84	0,87	0,87
Ν	1000	0,86	0,82	0,82	0,86	0,87
Ν	750	0,86	0,82	0,84	0,85	0,86
Ν	500	0,85	0,82	0,84	0,83	0,85
Ν	100	0,74	0,77	0,79	0,78	0,78
L	3000	0,78	0,74	0,78	0,76	-
L	1500	0,77	0,70	0,74	0,72	0,64
L	1000	0,75	0,67	0,72	0,7	0,64
L	750	0,74	0,65	0,7	0,68	0,64
L	500	0,71	0,62	0,67	0,65	0,63
L	100	0,54	0,53	0,59	0,54	0,52

Efficiencies of the screws η_{scre}

Tr-screw, single-pitch		18x4	20x4	30x6	40x7	50x8
Efficiency	0,45	0,42	0,39	0,39	0,35	0,33
Tr-screw, double-pitch	16x8P4	18x8P4	20x8P4	30x12P6	40x14P7	50x16P8
Efficiency	0,62	0,59	0,56	0,56	0,53	0,50

Torque curve ST8918L6708-B

Detector Arm – Actuator Calculations

Critical buckling force of the screws

B) Detector Arm Screw

 $l_{DA,scr} = 471 mm$ $E = 210000 N/mm^4$ v = 2 $F_{PL,DA} = 3000 N$, $l_{PL,DA} = 2500 mm$ $F_{DW,DA} = 1455 N$, $l_{DW,DA} = 1064 mm$

 $F_{DA} = \frac{F_{PL,DA} \cdot l_{2,DA} + F_{DW,DA} \cdot l_{1,DA}}{l_{2,DA}}$

Force F_{DA} , the screw nut reaction force is:

 $3000 \, N \cdot 2.5 \, m + 1455 \, N \, \cdot 1.064 \, m \\ \simeq 14.1 \, kN$

Thus, we obtain for the 2nd moment of inertia

and the minimum core diameter of the screw

 $F_{PL,DA} \cdot l_{PL,DA} + F_{DW,DA} \cdot l_{DW,DA} = F_{DA} \cdot l_{3,DA}$

0.643 m

 $d = \sqrt[4]{\frac{I \cdot 64}{\pi}} = \sqrt[4]{\frac{12073 \ mm^4 \cdot 64}{\pi}} = \frac{22.3 \ mm}{22.3 \ mm}$

Free screw length E – modulus Safety factor Payload detector arm Dead weight detector arm

Engineering & Design: R. Thermer

 $I = F X V X (L X 2)^2$

I x 64

CAK RIDGE National Laboratory

Detector Arm – Actuator Calculations

ZIMM jack screw systems

25kN-30×6-R-Trapezoidal Screw

Nanotec hybrid stepper motor

ST8918L6708-B - STEPPER MOTOR - NEMA 34

25 kN
1500 rpm
3000 rpm
30x6
Aluminium, corrosion-resistant
Steel, case-hardened, ground
38 kg
45 kg
Synthetic fluid grease
Grease lubrication
max. 60°, higher on request
N: 0.667 kg cm ² / L: 0.443 kg cm ²
max. 18 Nm (N) / max. 10 Nm (L)
max. 108 Nm
Rotating (R)

Standard configuration

CAK RIDGE

National Laboratory

21

Code	Gearbox (series)	Size	Version (variant)	Ratio	Screw	Stroke per drive shaft rotation
ZE-25-RN	75	25	R (rotating	N (normal) 6:1	T- 20-0	1,00 mm
ZE-25-RL	ZE	25	screw)	L (low) 24:1	Tr 30x6	0,25 mm

Detector Arm – Actuator Calculations

Necessary drive torque

ZIMM 25kN-30×6-R-Trapezoidal Screw

$F_{DA} = 14.1 kN$	Lifting Load (max. payloads + dead weights)
$l_{DA,scr} = 643 mm$	Arm length curved guides
p = 6 mm	Screw pitch
$\eta_{gear} = 0.54$	Gearbox efficiency (worm gear screw jack)
$\eta_{screw} = 0.39$	Screw efficiency
i = 24	Gearbox ratio
$M_{G,35} = ?$	Necessary drive torque

$$M_{G,35} = \frac{F_{DA} \cdot p}{2 \cdot \pi \cdot \eta_{gear} \cdot \eta_{screw} \cdot i} = \frac{14\ 100\ N \ \cdot 0.006\ m}{2 \cdot \pi \cdot 0.54 \cdot 0.39 \cdot 24} = \frac{2.7\ Nm}{2.7\ Nm}$$

Torque, resolution and speed

Stepper motor: Nanotec ST8918L6708-B

 $F_{PL,DA} = 3000 N, \quad l_{PL,DA} = 2500 mm, F_{DW,DA} = 1455 N, \quad l_{DW,DA} = 1064 mm$

 $l_{PL,DA}$

 $F_{DW,DA}$

 $l_{DW,DA}$

Jack screw system efficiencies

Efficiencies of the screw jack $\eta_{Gearbox}$ (without screw)

		rpm	GSZ-2	ZE-5	ZE-10	ZE-25	ZE-35	
	Ν	3000	0,87	0,81	0,83	0,87		
	Ν	1500	0,87	0,82	0,84	0,87	0,87	
	Ν	1000	0,86	0,82	0,82	0,86	0,87	
	Ν	750	0,86	0,82	0,84	0,85	0,86	
	Ν	500	0,85	0,82	0,84	0,83	0,85	
_	Ν	100	0,74	0,77	0,79	0,78	0,78	
	L	3000	0,78	0,74	0,78	0,76	-	
•DA,SCT	L	1500	0,77	0,70	0,74	0,72	0,64	
	L	1000	0,75	0,67	0,72	0,7	0,64	
	L	750	0,74	0,65	0,7	0,68	0,64	
	L	500	0,71	0,62	0,67	0.65	0,63	
	L	100	0,54	0,53	0,59	0,54	0,52	

Efficiencies of the screws η_{screw}

 F_{DA}

Tr-screw, single-pitch		18x4	20x4	30x6	40x7	50x8
Efficiency	0,45	0,42	0,39	0,39	0,35	0,33
Tr-screw, double-pitch	16x8P4	18x8P4	20x8P4	30x12P6	40x14P7	50x16P
Efficiency	0,62	0,59	0,56	0,56	0,53	0,50

 $F_{PL,DA}$

2.19.1001

Sample Table – Pivot Bearing Calculation

Engineering & Design: R. Thermer

23 **CAK RIDGE** National Laboratory

Sample Table – Pivot Bearing Calculation

Contact Stress estimate

Sphere in Contact Flat Surface

Rolling bearing material **100Cr6**

 $E = 208000 N/mm^2$ $F = \frac{1}{4} \cdot F_{BR} = 3775 N$

E-Modulus Load (*) radius Poisson's ratio

FRANKE GmbH 4-point contact bearing element LEL 4

We assume 2 points of contact per ball and with two balls these are 4 points of contact. The Hertzian contact stress equations deliver:

Contact area radius:

$$a = \sqrt[3]{\frac{6F(1-\nu^2)r}{E}} = \sqrt[3]{\frac{6\cdot3775N\cdot(1-0.3^2)\cdot4.8mm}{208000N/mm^2}} = 0.78 \ mm$$

J. K. Nisbett, R.G. Budynas (2015). Mechanical Engineering Design (10th ed.). McGraw-Hill,

Contact Stress:

CAK RIDGE National Laboratory

24

$$\sigma_c = \frac{3F}{2\pi a^2} = \frac{3 \cdot 3775N}{2 \cdot 3.1415 \cdot 0.78 \ ^2 mm^2} = 2958 \frac{N}{mm^2} \ (MPa) \ to \ 4 \ s. f.$$

 $r \cong 4.8 \, mm$

v = 0.3

Which is about 1.6 - 2.3 times more than the yield strength of 100Cr6 (1300 - 1800 MPa).

Detailed clarification with Franke GmbH needed!

25

(7)

Crossbeam Joint Calculation

Substituting the result of eq. (4) in eq. (3) gives

 $F_{JM, scr 1} = \frac{67}{27} \cdot \frac{28}{67} \cdot F_{joint} = \frac{28}{27} \cdot F_{joint} = 8.3 \ kN \ to \ 2 \ s. \ f.$ (5)

Preload force for the shear force absorption:

With a static friction coefficient of $\mu_{st} = 0.15$ for steel on steel, we obtain the minimum clamping force $F_{Jsh, scr}$ per screw

 $2 \cdot F_{Jsh, scr} \cdot \mu_{St} \geq F_{DA,R}/2$

CAK RIDGE National Laboratory

26

$$F_{Jsh, scr} \ge \frac{F_{DA,R}}{2 \cdot \mu_{St}} = \frac{8 \ kN}{2 \cdot 0.15} = 27 \ kN \ to \ 2 \ s. \ f.$$
(6)

Total required clamping force per screw with safety factor 1.5:

$$F_{scr,joint} = \left(F_{JM, scr 1} + F_{Jsh, scr}\right) \cdot 1.5 = \tag{*}$$

 $(8.3 kN + 27 kN) \cdot 1.5 = 52.4 kN$ to 3 s. f.

(*) We want the same preload on all the screws and prefer $F_{JM, scr 1}$ for the torque absorption since $F_{JM, scr 1} > F_{Mj, scr 2}$

Selection of the bolt property class and dimension:

Maximum preload and tightening torque at 90 % utilization of the yield point.

	Friction	Maximum preload F _{M max} [kN]								Maximum tightening torque M _{A max} [Nm]						
	coeff. Property class based on ISO 898/1							Property class based on ISO 898/1								
Thread	μK – μG	3.6	4.6	5.6/4.8	6.8	8.8	10.9	12.9	3.6	4.6	5.6/4.8	6.8	8.8	10.9	12.9	
M10	0,08	8,7	11,6	14,5	23,2	31,0	45,6	53,3	10,2	13,6	17,0	27,2	36	53	62	
	0,10	8,4	11,3	14,1	22,5	30,3	44,5	52,1	12	16,1	20,1	32,3	43	63	73	
	0,12	8,2	11,0	13,7	21,9	29,6	43,4	50,8	13,7	18,3	22,9	36,5	48	71	83	
	0,14	8,0	10,7	13,3	21,3	28,8	42,2	49,4	15,2	20,3	25,3	40,6	54	79	93	
M12	0,08	12,7	16,9	21,1	33,8	45,2	66,3	77,6	17	23	29	47	63	92	108	
	0,10	12,3	16,4	20,5	32,8	44,1	64,8	75,9	20	27	34	55	73	108	126	
	0,12	12,0	16,0	20,0	32,0	43,0	63,2	74,0	23	31	39	62	84	123	144	
	0,14	11,6	15,5	19,4	31,1	41,9	61,5	72,0	26	34	43	69	93	137	160	

Bossard technical resources:

https://media.bossard.com/global-en/-/media/bossardgroup/website/documents/technical-resources/en/f-047-en.pdf

Crossbeam Calculation

The slightly asymmetrical force introduction can be neglected in the following calculations.

Required clamping force per screw:

If we compare the lever lengths in the calculation for the beam joint with the lever lengths in the calculation for the cross beam there is practically no difference.

We can therefore use half the value of the result in eq. (7) as we have twice as many bolts.

Thus, the required force per screw is

$$F_{scr,beam} = \frac{F_{scr,joint}}{2} = \frac{52.4 \text{ kN}}{2} = 26.2 \text{ kN to } 3 \text{ s. f.}$$

Selection of the bolt property class and dimension:

Friction Maximum preload F_{M max}[kN] Maximum tightening torgue MA max [Nm] coeff. Property class based on ISO 898/ Property class based on ISO 898/1 Threads 10 $\mu_{\kappa} = \mu_{G}$ 10.9 12.9 12.9 3.6 46 5.6/4.8 6.8 8.8 3.6 4.6 5.6/4.8 6.8 8.8 10.9 0,08 23,2 45,6 53,3 10,2 53 8,7 11,6 14,5 31,0 13,6 17,0 27,2 36 62 16,1 32,3 43 63 0,10 8,4 11,3 14,1 22,5 30,3 44,5 52,1 12 20,1 73 48 71 0,12 8,2 11.0 13,7 21,9 29,6 43,4 50,8 13,7 18,3 22,9 36,5 83 54 0.14 8,0 10.7 13,3 21,3 28,8 42.2 49.4 15,2 20,3 25,3 40,6 79 93 0,08 63 92 108 M12 12,7 16,9 21,1 33.8 45.2 66.3 77.6 17 23 29 47 73 0.10 12,3 16,4 20.5 32.8 44,1 64,8 75,9 20 27 34 55 108 126 32,0 43,0 63,2 74,0 23 26 31 39 62 84 93 123 144 0,12 12,0 16,0 20,0 72.0 34 43 69 137 160 11.6 15.5 19.4 31.1 41.9 61.5 0.14

Calculation Rigidly fixed cross beam mount 56 mm *F_{DA,R}*

Cross Beam

(8)

Engineering & Design: R. Thermer

Maximum preload and tightening torque at 90 % utilization of the yield point.

Crossbeam Mount Calculation

$F_{DA,R} \coloneqq 14.1 \ kN$
$l_{DA,R} \coloneqq 56 mm$
$F_{sht, scr} \coloneqq ?$
$l_{sht, scr} \coloneqq 87.5 mm$
$F_{sh} \coloneqq ?$

Screw nut reaction force Lever length Shear force per screw due to torsion Lever length Shear force

Axial bolt forces required to absorb torsional load:

$F_{DA,R} \cdot l_{DA,R} - 8 \cdot F_{sht, scr} \cdot l_{sht, scr} = 0$	(9)
$F_{sht, scr} = \frac{F_{DA,R} \cdot l_{DA,R}}{8 \cdot l_{sht, scr}} = \frac{14.1 \text{ kN} \cdot 56 \text{ mm}}{8 \cdot 87.5 \text{ mm}} = 1128 \text{ N}$	(10)

With a static friction coefficient of $\mu_{st} = 0.15$ the required force for the absorption of the torsional load becomes

 $F_{bm, tors} \cdot \mu_{St} \ge F_{sht, scr}$

 $F_{bm, tors} \ge \frac{F_{sht, scr}}{\mu_{St}} = \frac{1128 N}{0.15} = \underline{7.5 \ kN}$ (11)

Clamping force for the shear force absorption:

The minimum clamping force $F_{bm, sh}$ per screw

 $8 \cdot F_{bm, sh} \cdot \mu_{St} \ge F_{DA,R}$

CAK RIDGE National Laboratory

 $F_{bm, sh} \ge \frac{F_{DA,R}}{8 \cdot \mu_{St}} = \frac{14.1 \, kN}{8 \cdot 0.15} = \underline{11.75 \, kN}$

The torsional load is absorbed

by 8 screws, 4 per flange.

Engineering & Design: R. Thermer

(13)

Crossbeam Mount Calculation

Total required clamping force per screw with safety factor 1.5:

 $F_{scr,joint} = \left(F_{bm, tors} + F_{bm, sh}\right) \cdot 1.5$

 $(7.5 kN + 11.75 kN) \cdot 1.5 = 28.9 kN to 3 s. f.$

Selection of the bolt property class and dimension:

Maximum preload and tightening torque at 90 % utilization of the yield point.

	Friction	Maximu	m preload	F _{M max} [k	N]			Maximum tightening torque MAmax [Nm]								
6	coeff.	Property class based on ISO 898/1								Property class based on ISO 898/1						
Threads	μκ-μ _G	3.6	4.6	5.6/4.8	6.8	8.8	10.9	12.9	3.6	4.6	5.6/4.8	6.8	8.8	10.9	12.9	
M10	0,08	8,7	11,6	14,5	23,2	31,0	45,6	53,3	10,2	13,6	17,0	27,2	36	53	62	
	0,10	8,4	11,3	14,1	22,5	30,3	44,5	52,1	12	16,1	20,1	32,3	43	63	73	
	0,12	8,2	11,0	13,7	21,9	29,6	43,4	50,8	13,7	18,3	22,9	36,5	48	71	83	
	0,14	8,0	10,7	13,3	21,3	28,8	42,2	49,4	15,2	20,3	25,3	40,6	54	79	93	
M12	0,08	12,7	16,9	21,1	33,8	45,2	66,3	77,6	17	23	29	47	63	92	108	
	0,10	12,3	16,4	20,5	32,8	44,1	64,8	75,9	20	27	34	55	73	108	126	
	0,12	12,0	16,0	20,0	32,0	43,0	63,2	74,0	23	31	39	62	84	123	144	
	0,14	11,6	15,5	19,4	31,1	41,9	61,5	72,0	26	34	43	69	93	137	160	

Bossard technical resources:

https://media.bossard.com/global-en/-/media/bossardgroup/website/documents/technical-resources/en/f-047-en.pdf

(16)

Crossbeam Bending Stress Calculation

We assume a rectangular cross beam with cross sectional area b x c, (b > c) that is fixed on both sides. The Bending stress that occurs in the given load case is defined as

$$\sigma_b = \frac{M_{A,B}}{W} \tag{14}$$

In our case, with $l_1 = l_2 = l/2$, the bending moment at position A is

$$M_{A} = \frac{F_{DA,R} \cdot l_{1} \cdot l_{2}^{2}}{l^{2}} \coloneqq \frac{F_{DA,R} \cdot l_{2}^{3}}{l^{2}} = \frac{F_{DA,R}}{l^{2}} \cdot \left(\frac{l}{2}\right)^{3} = \frac{F_{DA,R} \cdot l}{8}$$
(15)

and at C

$$M_{C} = \frac{2 \cdot F_{DA,R} \cdot l \cdot l_{1}^{2} \cdot l_{2}^{2}}{l^{4}} = \frac{2 \cdot F_{DA,R} \cdot l}{l^{4}} \cdot \frac{l^{2}}{4} \cdot \frac{l^{2}}{4} = M_{A}$$

and the axial moment of resistance

$$W \coloneqq \frac{b^2 \cdot c}{6}$$

$$\sigma_b = \frac{M_B}{W} = \frac{F_{DA,R} \cdot l}{8} \cdot \frac{6}{b^2 \cdot c} = \frac{3 \cdot F_{DA,R} \cdot l}{4 \cdot b^2 \cdot c} = \frac{3 \cdot 14.1 \ kN \cdot \ 374 \ mm}{4 \cdot (100 \ mm)^2 \cdot 21 \ mm} = \frac{18.8 \ \frac{N}{mm^2} \ (MPa) \ to \ 3 \ s. f.}{18.8 \ \frac{N}{mm^2} \ MPa}$$

Using stainless steel 316 (yield strength 241 MPa) the safety factor is ≈ 13 !

Force
Crossbar length
Bar side
Bar side

GIECK Engineering Formulas 7th Edition P10, P12

Crossbeam Torsion

We consider again a cross bar with cross sectional area $b \times c$, (b > c).

From Shigley's Handbook follows that the max. shear stress for the given torsional loading occurs in the middle of the longest side b and is of magnitude

$$\tau_{max} \approx \frac{F_{DA,R} \cdot l_{DA,R}}{b \cdot c^2} \cdot \left(3 + \frac{1.8 \cdot c}{b}\right) \tag{17}$$

$$= \frac{14.1 \ kN \cdot 56mm}{100 \ mm \cdot (21mm)^2} \cdot \left(3 + \frac{1.8 \cdot 21mm}{100 \ mm}\right) = \frac{60.5 \ \frac{N}{mm^2}}{mm^2} (MPa) \ to \ 3 \ s.f.$$
(18)

Using stainless steel 316 (yield strength 241 MPa) the safety factor is \approx 4 !

With the modulus of rigidity
$$G = \frac{E}{2(1+\nu)} = \frac{193000 MPa}{2(1+0.3)} = 74231 MPa$$

and the factor $\beta = 0.281$ (see table) we obtain the angle of twist

$$\theta = \frac{F \cdot l_{DA,R} \cdot l/2}{\beta \cdot b \cdot c^3 \cdot G} = \frac{14000N \cdot 66.5 \ mm \cdot 187 \ mm}{0.281 \cdot 100mm \cdot (21mm)^3 \cdot 74231 \frac{N}{mm^2}} =$$

 $4 \cdot 10^{-5} rad (= 0.01 deg)$ to 1 s.f.

Sample Table – Rotary Table Calculation

Actuator calculation & selection

Given are the following loads

$F_{PL,DA} = 3000 N$,	Payload detector arm
$F_{PL,ST} = 5000 N,$	Payload sample table
$F_{DW,STDA} = 6482 N,$	Dead weight sample table & detector arm
$F_{DW,TT} = 1180 N$	Dead weight turntable
$\mu_r = 0.003$	Friction coefficient of the curved guides

Thus, the friction force is therefore

 $F_{\mu} = \mu_r \cdot \left(F_{PL,DA} + F_{DW,STDA} + F_{PL,ST} + F_{DW,TT} \right) = 0.003 \cdot 15662N \cong 47 N$

We select the ball screw driven electric cylinder FESTO EGSL-BS-55-200-5P

General technical data								
Size	35 45			55		75		
Spindle pitch	[mm/rev]	8	3	10	5	12.7	10	20
Design		Electric mini slid	le					
		With ball screw						
		With guide						
Guide		Ball bearing cag	e guide					
Type of mounting		Via female threa	ıd					
		With centring sle	eeve					
		Via accessories						
Mounting position		Any						
Working stroke	[mm]	50 100, 200		100, 200, 250 100		100, 200, 300	00, 200, 300	
Guide value for payload, horizontal	[kg]	2 6		10		14		
Guide value for payload, vertical	[kg]	2 6		10		14		
Continuous feed force F _x	[N]	50 100		200		300		
Max. feed force F _x	[N]	75 150			300		450	
Max. no-load driving torque	[Nm]	0.015	0.090	0.080	0.150	0.135	0.265	0.165
Max. driving torque ¹⁾	[Nm]	0.127	0.205	0.415	0.415	1.017	1.654	2.231
Max. radial force ²⁾ [N]		20 120			260		300	
Max. speed [m/s]		0.5	0.3	1.0	0.4	1.0	0.65	1.3
Nominal acceleration [m/s ²]		15						
Max. acceleration ³⁾ [m/s ²]		25						
Repetition accuracy	±0.015							
Max. reversing backlash ⁴⁾	≤50							

) Friction and acceleration torque of the rotating mass taken into consideration

At the drive shaft

3) The max. acceleration is dependent on the moving mass, the driving torque and the max. feed force

32

Materials

Axis		
[1]	Yoke plate	Anodised wrought aluminium alloy
[2]	Guide rail	Rolled steel
[3]	Housing	Anodised wrought aluminium alloy
[4]	Spindle	Rolled steel
[5]	Spindle nut	Rolled steel
[6]	Cover	Painted aluminium
	Note on materials	RoHS-compliant
		Contains paint-wetting impairment substances

Sample Table – Rotary Table Calculation

Torque, resolution and speed

FESTO Electric Cylinder

- Motor : FESTO Stepper Motor EMMS-ST-57-S-SEB-G2 Torque: 0.8 Nm at 100 rpm; integrated break and rot. Encoder
- Gearbox: FESTO Planetary Gear EMGA-60-P-G3-SST-57 Gear Ratio: 3:1
- El. Cylinder: FESTO EGSL-BS-55-200 Ball Screw Drive Ball Screw Pitch: 5 mm; Stroke: 200 mm

Resolution: Stroke per drive shaft rotation = $\frac{5 \text{ mm}}{3} \approx 1.7 \text{ mm}$

Stroke per step (1.8°) = $\frac{1.7 \text{ mm}}{200} = 0.0083 \text{ mm}$

Angular Resolution $\approx asin \frac{8.3 \cdot 10^{-3} mm}{702.5 mm} = 6.8 \cdot 10^{-4} deg$ (R130: 2 · 10⁻³ deg)

Speed: Duration for the whole stroke $\approx \frac{200 \text{ mm}}{100 \text{ rpm} \cdot 1.7 \text{ mm}} = 1.16 \text{ min} \approx 70 \text{ s}$

Encoder: Renishaw RKLA30-S RESOLUTE absolute encoder scale.

Resolution: BiSS C: 50 nm

Sample Table – CG Calculation

Calculation of the position of the load acting on the turntable.

Given are the following loads:

CAK RIDGE

National Laboratory

34

We refer to the positions of the given forces relative to the lifting nut and calculate the position of a supporting force in case of a free-cut body.

 $x \coloneqq$

 $F_{PL,DA} \cdot (l_{PL,DA} + \mathbf{x}) - F_{CG,STDA} \cdot (l_{CG,STDA} - \mathbf{x}) - F_{PL,ST} \cdot (l_{PL,ST} - \mathbf{x}) - F_{CG,TT}$ $\cdot (l_{CG,TT} - \mathbf{x}) = 0$

$$x = \frac{-F_{PL,DA} \cdot l_{PL,DA} + F_{PL,ST} \cdot l_{PL,ST} + F_{CG,STDA} \cdot l_{CG,STDA} + F_{CG,TT} \cdot l_{CG,TT}}{F_{PL,DA} + F_{CG,STDA} + F_{PL,ST} + F_{CG,TT}}$$
$$= -0.074 m$$

As the distance between the lifting spindle and the turntable axis is 555 mm, the total load acts on the turntable at 629 mm from the axis of rotation.

Sample Table-CG Calculation

Load distribution on turntable guides

According to the calculation in the previous sheet, the total load is mainly distributed over the rear two carriages.

Thus, the force acting of each of the two carriages is

$$F_{car} = \frac{|F_{R,CG}|}{2} = \frac{7.85 \ kN \ (\cong \ \frac{1}{4.75} \cdot C)}{2}$$

and the corresponding moment is (conservative assumption with only two supporting carriages)

 $M_{car} = F_{car} \cdot 0.050 \ m = 7850 \ N \cdot 0.050 \ m \cong 0.39 \ kNm \ (\cong \frac{1}{2.3} M_C)$

35

Questions?

