SECOND TARGET STATION (STS) PROJECT

Interface Sheet for the Target Vacuum Systems and Conventional Facilities

Matt Ladenburger Mike Strong Mark Stidham John McCluskey, PE

Date: March 2025

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

S01020500-IST10068 R00

SECOND TARGET STATION (STS) PROJECT

Interface Sheet for the Target Vacuum Systems and Conventional Facilities

Date Published: March 2025

Prepared by OAK RIDGE NATIONAL LABORATORY Oak Ridge, TN 37831-6283 managed by UT-BATTELLE, LLC for the US DEPARTMENT OF ENERGY under contract DE-AC05-00OR22725

TABLE OF CONTENTS

TAB	BLE OF CONTENTSi	v		
1.	Purpose	1		
2.	Scope	1		
	2.1 Interfacing Parts or Components	1		
3.	Acronyms and Definitions	2		
4.	References			
	4.1 Documents Applicable to the Interfacing SSCs	2		
5.	Interface Definition	4		
	5.1 Technical Description of the Interface	4		
	5.2 Interface Data	5		

1. PURPOSE

This document defines the interface between Target Vacuum Systems and Conventional Facilities. The interface described in this document will provide inputs to the design of Target Vacuum Systems and Conventional Facilities.

2. SCOPE

The scope of this document is the complete interface definition for the interface between Target Vacuum Systems and Conventional Facilities as identified in the parent Interface Control Document [1] between Target Systems (TS) and Conventional Facilities (CF).

2.1 INTERFACING PARTS OR COMPONENTS

No.	Components (Target Va	cuum Systems)	Components (Conventional Facilities)			
	Name	Functional reference Number	Name	Functional reference Number		
1	PBW Inflatable Seals Vacuum Pumps	VACP-23500 VACP-23501	Vacuum equipment space, compressed air piping, HOG piping, pump power	N/A		
2	PBW Inflatable Seals Vacuum Tubing	N/A	TDR wall/floor penetration and bunker wall penetration	N/A		
3	PBW Shielding Inflatable Seals Vacuum Pumps	VACP-23504 VACP-23505	Vacuum equipment space, compressed air piping, HOG piping, pump power	N/A		
4	PBW Shielding Inflatable Seals Vacuum Tubing	N/A	TDR wall/floor penetration and bunker wall penetration	N/A		
5	Core Vessel Vacuum Pumps	VACP-23508 VACP-23511	Vacuum equipment space, compressed air piping, HOG piping, pump power	N/A		
6	Core Vessel Vacuum Tubing	N/A	TDR wall/floor penetration and bunker wall penetration	N/A		
7	CMS Hydrogen Coldbox Vacuum Skid	TBD	Vacuum equipment space, compressed air piping, skid power	N/A		
8	CMS Hydrogen Transfer Line Vacuum Skid	TBD	Vacuum equipment space, compressed air piping, skid power	N/A		
9	ACH Drying Vacuum Pump	VACP-24046	Vacuum equipment space, compressed air piping, HOG piping, pump power	N/A		
10	ACH Drying Vacuum Tubing	N/A	HPV / Service Cell wall penetration	N/A		
11	Core Vessel Vent Line Tubing	N/A	Target high bay floor trench and roof penetration	N/A		

3. ACRONYMS AND DEFINITIONS

- ACH Activated Component Handling
- CF Conventional Facilities
- CMS Cryogenic Moderator Systems
- CV Core Vessel
- HOG Hot Off Gas
- HPV Hot Process Vault
- HUR Hydrogen Utility Room
- ICD Interface Control Document
- PBW Proton Beam Window
- SSC Structure, System or Component
- TDR Target Drive Room
- TS Target Systems

4. **REFERENCES**

4.1 DOCUMENTS APPLICABLE TO THE INTERFACING SSCS

Ref	Document Titles	Document Control System Location
[1]	Second Target Station (STS) Project Interface Control	<u>S01020500-IC0006</u>
	Document for Target Systems and Conventional	
	Facilities	
[2]	Target Process Systems	<u>S03090200-J8U-8800-A10000</u>
	Piping and Instrumentation Diagram	
	Legend Sheet 1	
[3]	Target Process Systems	<u>S03090200-J8U-8800-A10001</u>
	Piping and Instrumentation Diagram	
	Legend Sheet 2	
[4]	MRA and Core Vessel Cooling Loop 2	S03090200-J8U-8800-A10007
	Proton Beam Window	
	Piping and Instrumentation Diagram	
[5]	MRA and Core Vessel Cooling Loop 2	<u>S03090200-J8U-8800-A10008</u>
	Core Vessel Cooling	
	Piping and Instrumentation Diagram	
[6]	MRA & Core Vessel Cooling Loop 2	<u>S03090200-J8U-8800-A10009</u>
	Core Vessel Atmosphere Management	
	Piping and Instrumentation Diagram	
[7]	Activated Cooling Loops	<u>S03090200-J8U-8800-A10017</u>
	Activated Components Drying	
	Piping and Instrumentation Diagram	
[8]	Target & Instrument Building Level 01 – Enlarged	<u>8800-AR1114</u>
	Plan – Sector T1	
[9]	Target & Instrument Building Level 02.5 – Enlarged	<u>8800-AR1127</u>
	Plan – Sector T1	
[10]	Target & Instrument Building Level 03 – Enlarged	<u>8800-AR1134</u>
	Plan – Sector T1	
[11]	Target & Instrument Building Level 1 - Loading	<u>8800-ST0010</u>
	Diagram - Overall	

[12]	Target & Instrument Building Level 2 - Loading Diagram - Overall	<u>8800-ST0020</u>
[13]	Target & Instrument Building Level 3 - Loading	<u>8800-ST0030</u>
[14]	Target & Instrument Building Enlarged Structural Plan – Level 1 – Sector T1	<u>8800-ST4000</u>
[15]	Target & Instrument Building Enlarged Structural Plan Level 2.5 – Sector T1	<u>8800-ST4201</u>
[16]	Target & Instrument Building – Level 3 – Structural Plan – Sector T1	<u>8800-ST1134</u>
[17]	Target & Instrument Building Level 1 Sector T1 Mechanical Floor Plan	<u>8800-MH1114</u>
[18]	Target & Instrument Building Level 2 Sector T1 Mechanical Floor Plan	<u>8800-MH1124</u>
[19]	Target & Instrument Building Level 1 Sector T1 Mechanical Piping Floor Plan	<u>8800-MP1114</u>
[20]	Target & Instrument Building Level 2 Sector T1 Mechanical Piping Floor Plan	<u>8800-MP1124</u>
[21]	Target & Instrument Building Level 3 Sector T1 Mechanical Piping Floor Plan	<u>8800-MP1134</u>
[22]	Target & Instrument Building Level 1 Sector T1 Plan - Equipment Connections	<u>8800-EP1134</u>
[23]	Target & Instrument Building Level 1 Sector T1 - Process Equipment Electrical Connections Schedule	<u>8800-EP1314P</u>
[24]	Target & Instrument Building Level 2.5 Sector T1Plan - Equipment Connections	<u>8800-EP1328</u>
[25]	Target & Instrument Building Level 3 Sector T1 Plan - Equipment Connections	<u>8800-EP1334</u>
[26]	Target & Instrument Building Level 3 Sector T1 - Process Equipment Electrical Connections Schedule	<u>8800-EP1334P</u>
[27]	Target & Instrument Building penetration details	TBD
[28]	Target & Instrument Building penetration schedule	TBD
[29]	Interface Sheet for the Process Systems Helium Distribution System and Conventional Facilities	<u>S01020500-IST10075</u>
[30]	Interface Sheet for the Process Systems and Conventional Facilities	<u>S01020500-IST10070</u>
[31]	Target Cryogenic Moderator Systems Piping and Instrumentation Diagrams	TBD

5. INTERFACE DEFINITION

5.1 TECHNICAL DESCRIPTION OF THE INTERFACE

There are a total of nine (9) vacuum pumps serving Target Systems as follows:

Description	Quantity	Location
PBW Inflatable Seals Vacuum Pumps	2	Monolith Vacuum Systems (STS204)
PBW Shielding Inflatable Seals Vacuum Pumps	2	Monolith Vacuum Systems (STS204)
Core Vessel Vacuum Pumps	2	Monolith Vacuum Systems (STS204)
CMS Hydrogen Coldbox Vacuum Cart	1	Hydrogen Utility (STS302)
CMS Hydrogen Transfer Line Vacuum Cart	1	Hydrogen Utility (STS302)
ACH Drying Vacuum Pump	1	Hot Process Vault (STS105)

Vacuum pumps will be used to keep target system components at negative pressure to prevent release of activated air.

Target Systems is responsible for:

- The design, procurement, and installation of the vacuum pumps, pump supports, vacuum tubing, pipe supports, and other vacuum systems equipment [2-7].
- Final electrical power connections from disconnect switches to vacuum pumps and other vacuum systems equipment.
- Final HOG connections to the vacuum system, method of connection to be determined.
- Routing vacuum tubing or other vacuum connection from the vacuum pumps to the end uses in the Target Drive Room, Hydrogen Utility Room, Hot Process Vault and Service Cell.
- Routing helium piping from the gas panels in Mechanical Room STS128 to final helium utility connections to the vacuum system. There are no TS Vacuum Systems to CF helium interfaces anticipated, refer to [29] for Target Process to CF helium system interfaces.

Conventional Facilities provides:

- A room or space house the vacuum pumps near the end use.
- Adequate structure to support and anchor the vacuum pump stands and pipe supports wherever vacuum service is needed.
- Electrical power to disconnect switches near each vacuum pump or other powered vacuum equipment location with accommodation for backup power on redundant pumps (CV and Inflatable Seal systems only).
- Compressed air connections at locations near vacuum valves.
- HOG piping connections to locations near each vacuum pump (excluding CMS systems).
- Wall penetrations to route vacuum tubing from vacuum pumps in the Monolith Vacuum Systems space to the Target Drive Room, and from the vacuum pump in the HPV to the Service Cell.
- A trench and penetrations as required to route the Core Vessel vent line to the roof.

5.2 INTERFACE DATA

5.2.1 Interface No. 1 - PBW Inflatable Seals Vacuum Pumps

- The PBW Inflatable Seal vacuum pumps will be specified, procured and installed by Target Vacuum Systems in the will be in Monolith Vacuum Systems Room (STS204) adjacent the Target Drive Room as shown in Figure 1.
- Vacuum pump equipment information is provided in Table 1 of Section 5.2.12. Additional system details are provided in [4].
- Structural and architectural details for the Monolith Vacuum Systems Room (STS204) can be found in [9, 15].
- Floor loading capacity information is provided in [13].
- CF will provide HOG and compressed air connections within STS204 and pipe routing information is provided in [18, 21].
- CF will provide electrical power to a disconnect in STS204 for each of the pumps [24].

Figure 1. Monolith Vacuum Systems Room Layout

5.2.2 Interface No. 2 – PBW Inflatable Seals Vacuum Tubing

- PBW Inflatable Seals vacuum tubing and system information is provided in [4].
- Target Systems is responsible for sizing, routing, procuring, and installing this vacuum tubing and all associated instrumentation and components.

• CF will provide penetrations in the Bunker and Monolith/TDR walls to enable routing of the 1" line form the point of use to the vacuum pumps. Penetration details are TBD [27, 28].

5.2.3 Interface No. 3 – PBW Shielding Inflatable Seals Vacuum Pumps

- The PBW Shielding Inflatable Seal vacuum pumps will be specified, procured and installed by Target Vacuum Systems in the will be in Monolith Vacuum Systems Room (STS204) adjacent the Target Drive Room as shown in Figure 1.
- Vacuum pump equipment information is provided in Table 1 of Section 5.2.12. Additional system details are provided in [4].
- Structural and architectural details for the Monolith Vacuum Systems Room (STS204) can be found in [9, 15].
- Floor loading capacity information is provided in [13].
- CF will provide HOG and compressed air connections within STS204 and pipe routing information is provided in [18, 21].
- CF will provide electrical power to a disconnect in STS204 for each of the pumps [24].

5.2.4 Interface No. 4 – PBW Shielding Inflatable Seals Vacuum Tubing

- PBW Shielding Inflatable Seals vacuum tubing and system information is provided in [4].
- Target Systems is responsible for sizing, routing, procuring, and installing this vacuum tubing and all associated instrumentation and components.
- CF will provide penetrations in the Bunker and Monolith/TDR walls to enable routing of the 1" line form the point of use to the vacuum pumps. Penetration details are TBD [27, 28].

5.2.5 Interface No. 5 – Core Vessel Vacuum Pumps

- The Core Vessel vacuum pumps and Residual Gas Analyzer will be specified, procured and installed by Target Vacuum Systems in the will be in Monolith Vacuum Systems Room (STS204) adjacent the Target Drive Room as shown in Figure 1.
- Vacuum pump equipment information is provided in Table 1 of Section 5.2.12. Additional system details are provided in [5, 6].
- Structural and architectural details for the Monolith Vacuum Systems Room (STS204) can be found in [9, 15].
- Floor loading capacity information is provided in [13].
- CF will provide HOG and compressed air connections within STS204 and pipe routing information is provided in [18, 21].
- CF will provide electrical power to a disconnect in STS204 for each of the pieces of equipment [24].

5.2.6 Interface No. 6 – Core Vessel Vacuum Tubing

- Core Vessel vacuum tubing and system information is provided in [5, 6].
- Target Systems is responsible for sizing, routing, procuring, and installing this vacuum tubing and all associated instrumentation and components.
- CF will provide penetrations in the Bunker and Monolith/TDR walls to enable routing of the 6" line form the point of use to the vacuum pumps. Penetration details are TBD [27, 28].

5.2.7 Interface No. 7 – CMS Hydrogen Cold Box Vacuum Pump Skid

- The Hydrogen Cold Box vacuum pump skid will be specified, procured and installed by Target Vacuum Systems in the Hydrogen Utility Room (STS302).
- Vacuum pump equipment information is provided in Table 1 of Section 5.2.12, and additional details are anticipated to be provided by TS in [31].
- Structural and architectural details for the HUR can be found in [10, 16].
- Floor loading capacity information is provided in [13].
- CF will provide compressed air supply and connections for vacuum valves if necessary within the HUR and pipe routing information is provided in [21].
- CF is not providing HOG for CMS vacuum vent connections. Venting will be within the scope of TS and is planned to utilize the hydrogen vent to be routed up through the roof, which is in TS scope.
- CF will provide electrical power to a disconnect in the HUR for the pump skid [25, 26].

5.2.8 Interface No. 8 – CMS Hydrogen Transfer Line Vacuum Pump Skid

- The Hydrogen Transfer Line vacuum pump skid will be specified, procured and installed by Target Vacuum Systems in the HUR.
- Vacuum pump equipment information is provided in Table 1 of Section 5.2.12, and additional details are anticipated to be provided by TS in [31].
- Structural and architectural details for the HUR can be found in [10, 16].
- Floor loading capacity information is provided in [13].
- CF will provide compressed air supply and connections for vacuum valves if necessary within the HUR and pipe routing information is provided in [21].
- CF is not providing HOG for CMS vacuum vent connections. Venting will be within the scope of TS and is planned to utilize the hydrogen vent to be routed up through the roof, which is in TS scope.
- CF will provide electrical power to a disconnect in the HUR for the pump [25, 26].

5.2.9 Interface No. 9 ACH Drying Vacuum Pump

- The ACH Drying vacuum pump will be specified, procured and installed by Target Vacuum Systems in the Hot Process Vault (STS105).
- Vacuum pump equipment information is provided in Table 1 of Section 5.2.12. Additional system details are provided in [7].
- Structural and architectural details for the HPV can be found in [8, 14].
- Floor loading capacity information is provided in Reference [11].
- CF will provide HOG and compressed air connections within the HPV and pipe routing information is provided in [17, 19].
- CF will provide electrical power to a disconnect in the HPV for the pump [22, 23].
- This pump is anticipated to require chilled water cooling. The interface for that is captured in [30].

5.2.10 Interface No. 10 ACH Drying Vacuum Tubing

- ACH Drying vacuum tubing and system information is provided in [7].
- Target Systems is responsible for sizing, routing, procuring, and installing this vacuum tubing and all associated instrumentation and components.

• CF will provide a penetration in the Service Cell / HPV wall to enable routing of the 2" line form the point of use to the ACH drying vacuum pump. Penetration details are TBD [27, 28].

5.2.11 Interface No. 11 Core Vessel Vent Line Tubing

- Core Vessel Vent Line information is provided in [4, 5].
- Target Systems is responsible for sizing, routing, procuring, and installing this vent line.
- The 6" vent line is currently planned to be routed from the Monolith Vacuum Systems room across the high bay floor, and up the plan east wall of the high bay to the roof. CF will provide a trench in the high bay floor and trench cover for this [16]. Roof penetration details are TBD.

5.2.12 Reference Vacuum Pump Data

Current equipment selections for Target Vacuum Systems anticipated vacuum pump configurations with power and utility requirements is presented in Table 1 below.

							Acceptable	Acceptable		Expected
							Input	Operating	Water	Supplied
							Voltage	Temperature	Consumption	Voltage
Vacuum System	Desc.	Component	Qty	Mfr	Mfr P/N	Location	(V AC)	(°F/°C)	(L/min)	(V AC)
Core Vessel Vacuum	Roughing	Pfeiffer ACP 90, Dry	2	Pfeiffer	V9GABSBZRF01	Monolith	3Ø, 200-240 V	53.6-104 / 12-	N/A	3-P, 240
System	Pump	Multi-stage Roots				Vacuum		40		
Inflatable Seal,	Roughing	Pfieffer ACP 28, Dry	2	Pfeiffer	V6SATSGZMF	Monolith	1Ø, 100-230 V	53.6-104 / 12-	N/A	1-P, 120
PBW or Core Vessel	Pump	Multi-stage Roots				Vacuum		40		
Side Vacuum System						Systems Area				
Inflatable Seal,	Roughing	Pfieffer ACP 28, Dry	2	Pfeiffer	V6SATSGZMF	Monolith	1Ø, 100-230 V	53.6-104 / 12-	N/A	1-P, 120
PBW Shielding or	Pump	Multi-stage Roots				Vacuum		40		
Accelerator Side						Systems Area				
Vacuum System										
CMS H2 Transfer	Roughing	Pfieffer ACP 28, Dry	1	Pfeiffer	V6SATSGZMF	Hydrogen	1Ø, 100-230 V	53.6-104 / 12-	N/A	1-P,120
Line Vacuum System	Pump	Multi-stage Roots				Utility Room		40		
CMS H2 Transfer	Turbo Pump	Pfeiffer Hipace 700,	1	Pfeiffer	PM P04 081	Hydrogen	N/A	Air Cooling Fan,	N/A	N/A
Line Vacuum System		for TCP 350, DN 160				Utility Room		±30 °F		
		CF								
CMS H2 Transfer	Turbo Pump	Pfeiffer TCP 350	1	Pfeiffer	PM C01 740	Hydrogen	1Ø, 115 to	41-104 / 5-40	N/A	1-P, 120
Line Vacuum System	Controller					Utility Room	230			
							~			
CMS H2 Cold Box	Roughing	Pfieffer ACP 28, Dry	1	Pfeiffer	V6SATSGZMF	Hydrogen	1Ø, 100-230 V	53.6-104 / 12-	N/A	1-P, 120
Vacuum System	Pump	Multi-stage Roots		- 6 - 66		Utility Room		40		
CMS H2 Cold Box	Turbo Pump	Pfeiffer Hipace 700,	1	Pfeiffer	PM P04 081	Hydrogen	N/A	Air Cooling Fan,	N/A	N/A
Vacuum System		for TCP 350, DN 160 CF				Utility Room		±30 °F		
CMS H2 Cold Box	Turbo Pump	Pfeiffer TCP 350	1	Pfeiffer	PM C01 740	Hydrogen	1Ø, 115 to	41-104 / 5-40	N/A	1-P,120
Vacuum System	Controller					Utility Room	230			
Component Drying	Roughing	MD-Kenny SDV Dry	1	MD-Kinney	SDV-200	Hot Process	3 Ø, 230-460	Water Cooled	4	TBD
Vacuum System	Pump	Screw, 200				Vault				

Table 1. Target Vacuum Systems Pump Equipment