

Core Vessel 4/2025 Preliminary Structural Analysis

T. McManamy 4/7/25

ORNL IS MANAGED BY UT-BATTELLE LLC FOR THE US DEPARTMENT OF ENERGY

Overall Core Vessel Seismic model with merged parts

Internal Shielding and nozzle extensions not included

Lower Vessel part and mesh

Beltline Part and mesh

Upper Cylinder Part and mesh

Lid and covers part

Tent Assembly

SpaceClaim Upper Shaft model

Shaft load ring model in Abaqus

Simplified Abaqus model

Shims simulated by 1 mm added to ring and leg bottom surfaces – bolts not included

Mesh model with C3D10 elements

Upper Shaft and Crown SpaceClaim model and approximation

Top 312 Part which includes crown for segment attachment with all holes and cooling tubes suppressed

× 7

Shaft model as a solid

Segment stalk simplified with merged parts and only main coolant channel and remote handling thinning included

Simplified foot

Foot simplified part

Tungsten and tantalum region

Mesh with materials

→ W-Ta density 19e3 kg/m³

Doghouse part

Density assumed 12.3 e3 kg/m3 Mass 5,000 kg

Assembly Mesh model examples

Upper region

Upper region with cut

Lower shaft region with cut

Total 6.9 x 10⁶ C3D10 elements

Mass of target components - 17,022 kg

Typical target pin tie to shaft flange

Typical foot to stalk tie

Typical stalk to top (crown) tie

Shaft to top tie

Top tie to load ring

Load ring to tent assembly tie

	🗣 Edit Constraint X
	Name: ring_bottom Type: Tie
•	 Main surface: tent_assy-1.tent_target > Secondary surface: load_ring2-1.ring_bottom > Discretization method: Analysis default > Exclude shell element thickness Position Tolerance Use computed default Specify distance: Note: Nodes on the secondary surface that are considered to be outside the position
	tolerance will NOT be tied.
	✓ Tie rotational DOFs if applicable
	Constraint Ratio
	O Specify value
	OK Cancel
至41日至11日	

Tent assy to lid tie

Lid to upper cylinders

Lid to Doghouse

Upper Cylinders to beltline

🜩 Edit Constraint		>
Name: upper_vessel_beltline Type: Tie		
Main surface: beltline-1.beltline_upper_vessel Secondary surface: upper_cylinders-1.upper_cylinder_be Discretization method: Analysis default Exclude shell element thickness	ltline 🔉	A er
Position Tolerance Use computed default		
O Specify distance:		
Note: Nodes on the secondary surface that are considered to be outside the position tolerance will NOT be tied.		
Adjust secondary surface initial position		
Tie rotational DOFs if applicable		
Constraint Ratio		
 Use analysis default 		

Beltline to Lower Cylinders

ž,
🖨 Edit Constraint 🛛 🕹
Name: beltline_lower_vessel Type: Tie
 Main surface: beltline-1.beltline_lower_vessel Secondary surface: lower_vessel-1.lower_vessel_beltline Discretization method: Analysis default Exclude shell element thickness Position Tolerance Use computed default Specify distance: Note: Nodes on the secondary surface that are considered to be outside the position tolerance will NOT be tied.
Adjust secondary surface initial position
✓ Tie rotational DOFs if applicable
Constraint Ratio
Vse analysis default Specify value
OK Cancel

Analysis sequence

- Step 1 Gravity only with internal shielding weight simulated with a pressure on the core vessel lip
- Step 5 Added Seismic side load of .072 G to give approximately 5 mm lateral displacement at shaft bottom
- Step 6 Added Seismic side load of .39 G for a total of .46 G with a 5mm displacement boundary condition
 applied to nodes at the bottom of the shaft near contact area with snubber ring
- Step 2 Vacuum pressure loads added
- Step 3 Internal water pressure load added
- Step 4 Core vessel CFD temperatures added with all model nodes assumed initially at 36 C stress free and the Core vessel CFD temperature applied to the lower cylinders, beltline, upper cylinders and lid. The results for this step then included all loads
 - Seismic analysis assumes the shaft is centered in the snubber ring attached to the core vessel shielding with a 5 mm gap all around
 - If the shaft is offset within the ring or if the ring can move under the seismic load, allowing a greater shaft displacement in one direction, the stresses could be significantly increased

Step 1 Gravity only

Gravity load

f(x)

A

Simulated weight of internal shielding

BC Fixed nodes on base

 ➡ Edit Boundary Condition Name: base Type: Symmetry/Antisymmetry/Encastre Step: Initial Region: lower_vessel-1.base_nodes CSYS: (Global) ↓ ↓ SSYMM (U1 = UR2 = UR3 = 0) YSYMM (U2 = UR1 = UR3 = 0) ZSYMM (U2 = UR1 = UR2 = 0) XASYMM (U2 = U3 = UR1 = 0; Abaqus/Standard only) YASYMM (U1 = U2 = U3 = 0; Abaqus/Standard only) ZASYMM (U1 = U2 = U3 = 0; ENCASTRE (U1 = U2 = U3 = UR1 = UR2 = 0;
OK

Step 1 Gravity loads Results

Vertical deflection 0.4 mm max downward

Von Mises Stress

Peak Stress 166 MPa

115 MPa scale max

Step 5 Side load to give approximately 5 mm displacement

Side load .15 g

Peak stress 416 MPa

Peak at sharp corner and localized

This step was included to distinguish stresses incurred from shaft angular deflection from full .46 G side load

Step 6 – side load added to give a total of 0.46 g and 5 mm displacement boundary condition at shaft bottom added

5mm displacement boundary condition

Step 6 gravity plus .46 seismic side load

U1 horizontal displacement peak 5.7 mm

S peak 447 MPa on load ring sharp corner

Step 6 Peak stress 226 MPa in core vessel structure by tent

Peak Core Vessel stress 226 MPa

Peak at singularity average below 172 MPa

Analysis for Vacuum Pressure, Water Pressure and Thermal loads added to gravity and Seismic loads

Vacuum pressure loads

5 Bar water pressure and CFD temperatures added in Steps 3 and 4

CFD Temperatures applied - all other parts fixed at 36 C

Step 4 Results – Seismic and operational loads

U1 peak 5.8 mm

U2 peak 1.1 mm down and 1 mm up at bottom plate

Step 4 Stress Assembly

Stress peak 448 MPa

Stress top region – 172 MPa scale max

448 MPa Stress peak is where a load ring leg connects to a ring on the side opposite to the load direction

Step 4 Core Vessel Stress Results – Seismic and operational loads

Core Vessel Stress – 172 MPa peak – 60 MPa scale

Peak stress 172 MPa by "tent" leg connection

Step 4 Stress Results – Seismic and operational loads

Lid gusset – 40 MPa scale maximum

Vessel Stress 60 MPa scale - mesh

Step 4 results with a cut 1 mm above the load ring tie to the tent assembly

Vertical stress and loads at bottom of load ring and legs S, S22 (Ava: 75%) ⊦3.035e+0 Max: +3.035 60 /ax: +3.035e+07 Elem: LOAD RING2-1.328056 Node: 561419 .46 seismic, pressure, temp, gravity ODB: CV all.odb Abagus/Standard 2025 Thu Mar 13 15:10:29 Eastern Daylight Time 2025 -4, Temperatures added 1: Step Time = 1.000

Vertical stress and load in central ring

Approximately 88% of the vertical load is transmitted to the central ring

The overpressure case with 15 PSIG internal pressure was evaluated

- The external pressure of 1 bar in step 2 was replaced with an internal pressure of 103400 Pa (15 PSIG)
- All other loads were applied as previously done including seismic displacement and imported temperature profile

External 15 PSIG case added for Step 2

Internal 15 psig on core vessel

🜩 Edit Load 🛛 🗙
Name: Load-4 Type: Pressure Step: Step-2 (Static, General) Region: inside_15psi 🔉
Distribution: Uniform V f(x)
Magnitude: 103400
Amplitude: (Ramp) 🔽 🏠
OK Cancel

Surfaces with 15 PSIG applied

Mises stress with combined loads including internal pressure

S Mises = 172 MPa scale maximum

Peal stress 213 MPa in core vessel

Peak core vessel stresses with all loads still driven by shaft displacement with a peak of 213 MPa at a corner singularity

Von Mises stress with 50 MPa scale maximum

Peak stress in lower cylinder of 82 MPa in drainage groove – 50 MPa scale

Component Stresses with all loads including internal pressure

Lid and Covers – peak 86 MPa

Tent Assembly 50 MPa scale – peak 213

Summary

- Results are preliminary and do not include any bolt analysis
- Elastic material properties assumed
- Mesh refinement in some high stress locations would be desirable
- Lower Vessel thermal stresses assume a 36 C base plate temperature
- Loads do not include nozzle extensions
- Approximately 88 % of the vertical gravity loads from the target assembly go through the central ring structure and only approximately 12 % is carried by the "legs"
- Calculated Core vessel stresses all are at or below the 172 MPa limit for 1.5 Sm on membrane plus bending including a .46 G seismic load in the beam upstream direction and vacuum operation
- The target shaft load ring and core vessel peak stresses are driven by the angular deflection of the stiff shaft
- The peak stresses are very sensitive to the amount of deflection at the base of the shaft within the nominal 5
 mm gap from the restraint ring

Summary (continued)

- An internal pressure of 15 psig instead of vacuum increased the peak stress at the tent leg connection corner singularity from 172 MPa to 213 MPa including a 5 mm seismic displacement at the bottom of the shaft
- Stresses from the internal pressure were generally below 90 MPa except at the singularity by the leg
 connection
- Cover plate stresses from internal pressure did not consider bolt loads and assumed merged surfaces

