

Vessel Systems and Target Station Shielding Thermal Analysis

Chris Anton Min-Tsung Kao Darren Dugan Hogan Knott Mike Strong April 22, 2025

ORNL IS MANAGED BY UT-BATTELLE LLC FOR THE US DEPARTMENT OF ENERGY

Presentation Outline

Nozzle Extension Analysis

CV Cooled Shielding Analysis

CV Uncooled Shielding Analysis

Target Station Shielding Analysis

Vessel Systems (S.03.06) Core Vessel Thermal Hydraulic Analysis

Min-Tsung Kao

09/06/2023

ORNL IS MANAGED BY UT-BATTELLE LLC FOR THE US DEPARTMENT OF ENERGY

CV Introduction and Requirements

- The position of the following components are impacted by the CV thermal performance:
 - Target Assembly
 - Moderator Reflector Assembly
 - Core Vessel Shielding
 - Monolith Inserts (neutron guide optics)
 - Target Viewing Periscope

Core Vessel Thermal Requirements:

- Maximum stainless steel temperature = 200 C
- Maximum pressure drop = 15 PSI
- Maximum cooling water temperature = 100 C
 - Soft requirement to avoid water boiling within the shielding

Simplified Core Vessel Model used for thermal analysis

Core Vessel, Cooling Channel

Core Vessel, Cooling Channel

 \downarrow : inlet, 0.5 kg/s (8 GPM) 32.2°C H₂O

† : outlet, 45 psia

Material Properties

SS316 Material Properties From Ansys

Stainless steel, 316, annealed Data compiled by Ansys Granta, incorporating various sources including JAHM and MagWeb.

Density (kg/m³)	7969
Coefficient of Thermal Expansion (1/K)	1.61E-05
Specific Heat (J/kg-K)	486.1
Thermal Conductivity (W/m-K)	14.58
Young's Modulus (Pa)	1.95E+11
Poisson's Ratio	0.27
Bulk Modulus (MPa)	1.413E5
Shear Modulus (MPa)	76772
Tensile Ultimate Strength (MPa)	565.1
Tensile Yield Strength (MPa)	252.1

Zero Thermal Strain Reference Temperature (°C) 32.2

Core Vessel, Mesh Configuration for CFD Analysis

Polyhedral meshes: 25,375,561

Core Vessel, Heat Source (SS316)

SECOND TARGET National Laboratory

Core Vessel, Heat Source (SS316)

Q_{ss} = 1,868 W

Core Vessel, Streamlines

Core Vessel, Stainless Steel Temperature

Peak: 43°C

Temperature (C) Temperature (C) Q_CV (W/m^3) > 5.00e+02 43.0 43.0 Fron 4.50e+02 Rear 4.00e+02 41.9 41.9 3.50e+02 3.00e+02 40.9 40.9 2.50e+02 2.00e+02 39.8 39.8 1.50e+02 .00e+02 5.00e+01 38.7 38.7 3.10e-05 37.6 37.6 36.5 36.5 Q_CV (W/m^3) 35.4 35.4 3.08e+02 Front 2.78e+02 Rear 34.4 2.47e+02 34.4 2.16e+02 1.86e+02 Х Х 33.3 33.3 7 1.55e+02 1.24e+02 32.2 32.2 9.35e+01 6.28e+01 X 3.21e+01 .42e+00

No cooling channel in this plate

Heat Source

Core Vessel, Stainless Steel Temperature

Peak: 43°C

Core Vessel, Water Temperature

Peak: 38.8°C

Core Vessel Thermal Analysis Summary

Vessel Systems (S.03.06) Shield Block #1 Thermal and Structural Analysis

Min-Tsung Kao 09/04/2024

ORNL is managed by UT-Battelle, LLC for the US Department of Energy

Shield Block #1 Introduction and Requirements

- The position of the following components are impacted by Shield Block #1 thermal performance:
 - Target Assembly Snubber
 - Moderator Reflector Assembly
 - Core Vessel Shielding
 - Target Viewing Periscope

Shield Block #1 thermal requirements:

- Maximum stainless steel temperature = 200 C
- Maximum pressure drop = 15 PSI
- Maximum cooling water temperature = 100 C
 - Soft requirement to avoid water boiling within the shielding

Water pressure + Thermal + Gravity

Stacked Plate Design

Deformation scale = 180

Peak Stress : 488 MPa SS316 Yield Strength: 252 MPa

Cooled Block #1 Current Design

Water Volume ~ 20 gallons

Cover Design

Cooled Block #1 Thermal Analysis

Stainless Steel			
Density	7750) kg/m³	
Structural		×	
✓Isotropic Elasticity			
Derive from	Young's Modulus	Young's Modulus and Poisson's Ratio	
Young's Modulus	1.93e+11	Pa	
Poisson's Ratio	0.31	l	
Bulk Modulus	1.693e+11	Pa	
Shear Modulus	7.3664e+10) Pa	
Isotropic Secant Coefficient of Thermal Expansion	1.7e-05	5 1/°C	
Compressive Ultimate Strength	() Pa	
Compressive Yield Strength	2.07e+08	3 Pa	
Tensile Ultimate Strength	5.86e+08	3 Pa	
Tensile Yield Strength	2.07e+08	} Pa	
Thermal		~	
Isotropic Thermal Conductivity	15.1	W/m.ºC	
Specific Heat Constant Pressure	480) J/kg.°C	

Apply Convection Boundary Condition

Analytical Approach

- Steady state thermal analysis with estimated water convection was used
 - Provides a quick method to evaluate cooling geometry
- Convection coefficient calculated using the Dittus-Boelter equation
- A more thorough CFD analysis will be performed during final design

Apply Heat Generation

Temperature Results

Shield Block #1 Analysis Summary

Shield Block #1 Analysis Results:

- Maximum stainless steel temperature = 200 C
 - ANSYS results: Maximum stainless steel temperature = 65.5 C → PASS
- Maximum pressure drop = 15 PSI
 - ANSYS results: TBD → Unconfirmed
- Maximum water temperature = 100 C
 - ANSYS results: TBD→ Unconfirmed

Vessel Systems (S.03.06) Shield Block #3 Thermal and Structural Analysis

Min-Tsung Kao 12/24/2024

ORNL is managed by UT-Battelle, LLC for the US Department of Energy

Shield Block #3 Introduction and Requirements

- The position of the following components are impacted by Shield Block #3 thermal performance:
 - Target Assembly Snubber
 - Core Vessel Shielding
 - Target Viewing Periscope

Shield Block #3 thermal requirements:

- Maximum stainless steel temperature = 200 C
- Maximum pressure drop = 15 PSI
- Maximum cooling water temperature = 100 C
 - Soft requirement to avoid water boiling within the shielding

Layer 2 cooled shield block history

B: Static Structural Equivalent Stress Type: Equivalent (von-Mises) Stress Unit: MPa Time: 1 s

Layer 2 Shield Block Latest Design

Shield Block #3 (Design_31), SS316 Temperature

Shield Block #3 (Design_31), Water Temperature

Shield Block #3 (Design_31), Water Pressure

 $\Delta P_{inlet_1-outlet_1} = 9.5 \, psi \, (8 \text{GPM})$ $\Delta P_{inlet_2-outlet_2} = 13.2 \, psi \, (8 \text{GPM})$ $\Delta P_{inlet_3-outlet_3} = 12.9 \, psi \, (8 \text{GPM})$

Shield Block #3 Analysis Summary

Shield Block #3 Analysis Results:

- Maximum stainless steel temperature = 200 C
 - ANSYS results: Maximum stainless steel temperature = 53.2 C → PASS
- Maximum pressure drop = 15 PSI
 - ANSYS results: Maximum pressure drop = $13.2 \rightarrow PASS$
- Maximum water temperature = 100 C
 - ANSYS results: Maximum water temperature = 40 C \rightarrow PASS

CV Uncooled Shield Block Thermal Analysis

Hogan Knott

ORNL IS MANAGED BY UT-BATTELLE LLC FOR THE US DEPARTMENT OF ENERGY

Uncooled Shielding Introduction and Requirements

- The position of the following components are impacted by uncooled shielding thermal performance:
 - Target Viewing Periscope

Uncooled Shielding Thermal Requirements:

• Maximum carbon steel temperature = 200 C

Vessel Shielding Area Definition

Thermal Model Boundary Conditions

Assume surfaces contacting stainless steel are maintained at 35°C

Thermal Model Boundary Conditions

- Assume thermal contact resistance of $R''_{t,c} = 0.0025 \text{ m}^{2*}\text{K/W}$ between all contacting resting surfaces [1]
- Conservative assumption for stainless steel contact under vacuum conditions
- No convective or radiative effects applied

Apply Heat Generation Plot

B: Uncooled Blocks Imported Heat Generation Time: 1. s Unit: W/m³ 4/9/2025 1:07 PM 1.2277e5 Max 1.0912e5 95484 81843 68203 54562 40922 27281 13641 2.6399e-5 Min Imported Heat

Temperature Results

Max

.

B: Uncooled Blocks Temperature Type: Temperature Unit: °C Time: 1 s 4/9/2025 1:08 PM 292.49 Max 263.85 235.2 206.56 177.92 149.28 120.64 91.994 63.351 34.709 Min

Temperature Results Removable Blocks

B: Uncooled Blocks Temperature 2 Type: Temperature Unit: °C Time: 1 s 4/10/2025 4:55 PM 292.49 Max 267.16 241.84 216.51 191.19

165.86

140.53

115.21

89.881

64.555 Min

Temperature Results Stationary Blocks

B: Uncooled Blocks Temperature 3 Type: Temperature Unit: °C Time: 1 s 4/10/2025 4:57 PM

Uncooled Shielding Analysis Summary

Uncooled Shielding Analysis Results:

- Maximum stationary shielding stainless steel temperature = 200 C
 - ANSYS results: Maximum stainless steel temperature = 56.6 C → PASS
- Maximum removable shielding stainless steel temperature = 200 C
 - ANSYS results: Maximum stainless steel temperature = 292.5 C → FAIL

CV Nozzle Extension Thermal Analysis

Min-Tsung Kao

ORNL IS MANAGED BY UT-BATTELLE LLC FOR THE US DEPARTMENT OF ENERGY

Nozzle Extensions Introduction and Requirements

- The position of the following components are impacted by nozzle extension thermal performance:
 - Monolith Inserts (with guide optics)

Nozzle Extensions Thermal Requirements:

• Maximum stainless steel temperature = 200 C

CV Nozzle Extensions Analyzed in This Presentation

The nozzle extensions at QIKR, ST10, and ST11 are chosen for the thermal analysis because:

- ST10: facing the lower MRA (~1 m), forward direction of proton beam, higher energy deposition, active cooling
- ST11: facing the upper MRA (~1 m), forward direction of proton beam, higher energy deposition, active cooling
- QIKR: farther away from MRA (~1.9m), backward direction of proton beam, lower energy deposition, passively cooled

Geometry (ST10)

Geometry, Nozzle Extension @ ST10, ST11, and QIKR

ST11

ST10

QIKR

SECOND TARGET

- This presentation discusses the **temperature profile** of nozzle extensions.
- The results in this presentation are extracted from the thermal analyses done for the QIKR and Monolith Insert Modules at ST10 and ST11. More details can be found : <u>Monlith_Insert_PDR_CFD_Analysis_06_25_2024.pptx</u>

MTK_QIKR_Heat_Transfer_Analysis_2025_03_07_Updated.pptx

- The front surface of the nozzle extension is welded to the well-cooled core vessel beltline (active cooling).
- A separate CFD analysis was done for the core vessel beltline, and the obtained temperature profile was used to set the boundary condition for the nozzle extension.

Assume @ 35°C (conservative) **Contact Surface** 32.3°C Temperature (C) 32.5 32.5 32.4 32.4 32.4 QIKR 32.4 32.3 32.3 CV 32.3 32.2 32.2 CAK RIDGE SECON National Laboratory

Gap (No Contact)

QIKR

- Front surface is welded to the core vessel beltline.
- ST10 & ST11 have active cooling circuits.
- QIKR is only passively cooled through the contact with CV; therefore, its front surface is assumed at a higher temperature (35°C, conservative assumption).

Boundary Conditions:

- front surface of ST10 & ST11: **34°C**
- front surface of QIKR: **35°C**

ST11

ST10

Heat Source, Nozzle Extension of QIKR

• Energy deposition of QIKR from Kristel Ghoos

$1 \text{ kW/m}^3 = 1 \text{ mW/cc}$

Temperature, Nozzle Extension of QIKR

Peak: 36.8°C

Heat Source, Nozzle Extensions of ST10 & ST11

• Energy deposition of ST10 & ST11 from Thomas Miller

Nozzle Extension Analysis Summary

Uncooled Shielding Analysis Results:

- Maximum standard nozzle extension stainless steel temperature = 200 C
 - ANSYS results: Maximum stainless steel temperature = 46.6 C \rightarrow PASS
- Maximum QIKR Nozzle Extension stainless steel temperature = 200 C
 - ANSYS results: Maximum stainless steel temperature = 36.8 C \rightarrow PASS
- Maximum Dual Channel Nozzle Extension stainless steel temperature = 200 C
 - ANSYS results: TBD → Unconfirmed

CV & TSS PDR Neutronics Contributions: Monolith Heating

Thomas M Miller, Min-Tsung Kao, Kumar Mohindroo

March 27, 2025

ORNL IS MANAGED BY UT-BATTELLE LLC FOR THE US DEPARTMENT OF ENERGY

Target Station Shielding Introduction and Requirements

- The target station shielding provides significant radiation shielding to the monolith
- The target station shielding also provides thermal protection for the monolith concrete, reducing the amount of neutronic heating is seen in the concrete

Target Station Shielding Thermal Requirements:

- Maximum carbon steel temperature = 200 C
- Maximum concrete temperature = 65 C

- Objective is to ensure the concrete temperature is below 65°C
- A greatly simplified geometry was analyzed for preliminary design

cooled.

Zavorka

Heat Removal on Boundaries

Portion of the 519 W in **top steel** and the heat in **top concrete** flow **outwards** to the **concrete outer surface**. Therefore, it is ok to assume perfect contact radially between concrete and steel because the top concrete is mainly cooled by the 35°C environment, not by the 40°C cooled surface.

• Heat transfer coefficient, h = 1.38 W/m²-K

Steel Temperature

Peak: 47.9°C Peak: 47.0°C Temperature (C) Temperature (C) Temperature (C) 47.9 47.9 47.0 46.8 47.1 45.9 45.6 46.3 44.9 44.4 45.5 43.8 43.3 44.7 42.7 42.1 44.0 41.7 41.0 43.2 40.6 39.8 42.4 39.6 x^Y z XY X^Y z 38.7 41.6 38.5 Z 37.4 37.5 40.8 36.4 36.4 40.0

Average outer surface temperature is 36.5°C.

Concrete Temperature

This value was used to evaluate heat transfer coefficient.

Steel + Concrete Temperature

Target Station Shielding Analysis Summary

Uncooled Shielding Analysis Results:

- Maximum carbon steel temperature = 200 C
 - ANSYS results: Maximum stainless steel temperature = 47.9 C \rightarrow PASS
- Maximum concrete temperature = 65 C
 - ANSYS results: Maximum concrete temperature = 44 C → PASS

Backup Slides

Q_{ss} = 1,868 W

CAK RIDGE SECOND TARGET STATION

Heat Source (SS316) of Core Vessel and Cooling Channel

Only the region near the **inlet of Loop_4** has **higher heating**. The heating rate for the **rest of Loop_4** is **low** (Loop_3 is similar).

CAK RIDGE National Laboratory

Q_{ss} = 1,868 W

Q_CV (W/m^3) Q_CV (W/m^3) 3.08e+02 > 5.00e+02 Front Front 4.50e+02 Rear 2.78e+02 Rear 4.00e+02 2.47e+02 3.50e+02 2.16e+02 3.00e+02 1.86e+02 2.50e+02 1.55e+02 2.00e+02 1.24e+02 1.50e+02beam 9.35e+01 1.00e+02 6.28e+01 X ž 5.00e+01 3.21e+01 3.10e-05 1.42e+00

Water Pressure Loop_1 & Loop_2

SECOND National Laboratory

Water Pressure Loop_1 & Loop_2

Loop_1

Loop_2

Velocity Loop_1 & Loop_2

Core Vessel, Water Temperature

Loop_1

Inlet Temperature : 32.20°C Outlet Temperature : 32.89°C

Inlet Temperature : 32.20°C Outlet Temperature : 32.33°C

Core Vessel, Water Temperature

Loop_3

Inlet Temperature : 32.20°C Outlet Temperature : 32.24°C Inlet Temperature : 32.20°C Outlet Temperature : 32.26°C

Shield Block #1, Stainless Steel Temperature

Peak: 71.4°C

Animation

Animation

Х

Shield Block # 1(from 02/05/2024), SS316, Solid

Heat Source and Cooling Channel of Shield Block #1 (SS316)

Shield Block #1, Stainless Steel Temperature

Peak: 71.4°C

56.8 53.2 49.5 45.9 42.3

38.6

35.0

Х

Water pressure + Thermal + Gravity

Von-Mises Stress

Deformation scale = 180

Peak Stress : 488 MPa SS316 Yield Strength: 252 MPa

Water pressure + Thermal + Gravity

Displacement

B: Static Structural

Water Pressure 5 bar **Displacement B: Static Structural** Directional Deformation_X Type: Directional Deformation(X Axis) **Total Deformation** Unit: mm Global Coordinate System Time: 1 s **B: Static Structural** 0.63484 Max **Total Deformation** 0.4942 0.35357 Type: Total Deformation **X** - Deformation Max 0.21293 Unit: mm 0.072294 Time: 1 s Max -0.068341 -0.20898 -0.34961 0.99545 Max -0.49025 0.88484 -0.63088 Min 0.77424 0.00 500.00 1000.00 (mm) 0.66363 750.00 250.00 0.55303 0.44242 B: Static Structural 0.33182 Directional Deformation_Y 0.22121 Type: Directional Deformation(Y Axis) Unit: mm 0.11061 Global Coordinate System 0 Min Time: 1 s 0.99545 Max 0.85368 0.00 500.00 1000.00 (mm) 0.71191 Y - Deformation 0.57015 750.00 250.00 0.42838 0.28661 0.14484 **B: Static Structural** 0.0030758 Deformation 1 -0.13869 -0.28046 Min Type: Total Deformation Unit: mm 0.00 500.00 1000.00 (mm) 250.00 750.00 Time: 1 s Max 0.99545 Max **B: Static Structural** Directional Deformation_Z 0.88484 Type: Directional Deformation(Z Axis) 0.77424 Unit: mm Global Coordinate System 0.66363 Time: 1 s 0.55303 0.19867 Max 0.44242 0.15428 0.10988 0.33182 **Z** - Deformation 0.06548 0.22121 0.021082 Max 0.11061 -0.023317 -0.067715 0 Min -0.11211 -0.15651 -0.20091 Min

0.00

500.00 1000.00 (mm)

750.00

1

500.00

750.00

0.00

250.00

1000.00 (mm)

Thermal Only

Von-Mises Stress

Deformation scale = 500

Peak Stress : 83 MPa SS316 Yield Strength: 252 MPa

Thermal Only

Displacement

B: Static Structural

Gravity Only

Von-Mises Stress

Deformation scale = 100

Peak Stress : 13 MPa SS316 Yield Strength: 252 MPa

