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• Basic concepts, relation to 
microscopy & diffraction 

• Neutron Contrast

• Size & shape of scattering particles

• Interacting particles, hierarchical 
structures etc. 

• Summary, references
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Small Angle Scattering and Microscopy

• Common features
– Size range 1nm-1m

– Contrast labeling options (stains / isotope labels)

• SANS practical aspects
– No special sample preparation necessary (such as cryo freezing) 

– Sample environments available for pressure, temperature, magnetic field etc.

– Non-invasive 

– In-situ, time-resolved

• Fundamental difference
– “Real space” image with certain resolution

– Scattering pattern, averaged over volume

• Complementarity
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Microscopy : enlarged image

Scattering (SANS): interference pattern
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From scattering angle to scattering vector

Wave vector k:  |k| = k = 2/

q in nm-1 or Å-1
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Scattering and Diffraction (Crystallography)

• Diffraction from crystals, Scattering from anything else (less 
ordered)

• Same basic physics: interactions of radiation with matter

– SAXS/WAXS, SAND/WAND 

– Instruments: resolution vs flux tradeoff (diffraction/scattering)

– Diffraction needs crystal lattices, scattering does not.

– Data analysis is very different in most cases.

• At small q (small angles, large ): observe nm-sized volume 
elements, “blobs” NOT atoms 

– Scattering length → scattering length density SLD, symbol  

– SA(N)S is sensitive to spatial non-uniformity of SLD:  
SLD = Contrast  →  contrast variation!
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Small Angle (Neutron) Scattering Intensity

• Interference of wavelets from distribution of nuclei (= structure) adds 
up to “net scattering” amplitude (Fourier transform of structure).

• Measured intensity I(q) is the magnitude square of amplitude.

          common form:

• I(q) also is the Fourier transform of the pair correlation function P(r).

• Incoming waves scatter off individual nuclei according to scattering 
length b (can be + or -).
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Element Neutrons 

(10-12 cm)

X-rays 

(10-12 cm)

Electrons 

          

1H -0.374 0.28 1

2H (D) 0.667 0.28 1

C 0.665 1.67 6

N 0.940 1.97 7

O 0.580 2.25 8

P 0.520 4.23 15

Neutron Contrast – Atomic Scattering Lengths

For Small Angle 
Scattering

SANS (concept 
applies also to X-
rays)  

SL → SLD → SLD
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Increasing SAS information content by neutron contrast 
variation

• Block copolymer micelle with deuterated PEO block

• In solution neutrons probe:

– Core only in 100% D2O

– Shell only in 16% D2O / 84% H2O

– Core-shell-interference term only in 60% D2O / 40%H2O 

60%D2O

16%D2O

100%D2O
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D-labeling tuning knob

• 100% deuteration is not 
always what you want

• Proteins, polymers, organic 
molecules
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Sphere
precisely: monodisperse sphere of uniform density with 
sharp and smooth surface
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Some Notes on Background Subtraction

• A crucial step in data reduction/analysis

• Different sources of background (ambient, cell, intrinsic to 
sample) often require different treatments.

• Coherent scattering intensity drops over orders of magnitude 
with q (log scale), incoherent background is constant. 

• More hydrogen means more incoherent background, this can 
influence the choice of contrast. (Less background is better.)
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End of Part 1

• Basic concepts, relation to 
microscopy & diffraction 

• Neutron Contrast

• Size & shape of scattering particles

• Interacting particles, hierarchical 
structures etc. 

• Summary, references
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Spheres of different sizes
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Ellipsoid
 aspect ratio 1.5
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Guinier Analysis 
size of any kind of object

• At small enough Q anything that could reasonably be considered a 
discrete object follows Guinier’s approximation.

ggg RRqRRqqI
3

522 :sphere;13/)](ln[ =

• Modified Guinier approximations 
exist to determine cross sectional 
radius of rods or thickness of 
sheets
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Guinier Analysis  
size of any kind of object
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Guinier analysis for compact particles
I0=1 ± 6.4344e-06

Rg=77.627 ± 0.0078715 Å
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Guinier analysis for compact particles
I0=1.002 ± 0.00022913
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Precise Rg is 77.46 Å 
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“Long & thin” cylinder
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Polymer coil
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Surface Scattering - Porod

But, fractal rough interfaces: Q-x
 , 3 < x < 4

Diffuse interfaces: x > 4
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SAS Form Factor Modeling 
used in structural biology

• Spherical Harmonics (Svergun, Stuhrmann, Grossman …)

• Aggregates of Spheres (Svergun, Doniach, Chacón, Heller …)

• Sets of High-resolution Structures (Svergun, Heller, Grishaev, Gabel …)

• Simple Shapes and Custom Approaches (Henderson, Zhao, Gregurick, Heller …)
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Dmax

r

Pair correlation function and shape

P(r) : inverse Fourier transform of 

scattering function : Probability of 

finding a vector of length r between 

scattering centers within the 

scattering particle.
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Interparticle Structure Factor  S(Q)

S(q) examples: hard sphere potential, sticky sphere, screened coulomb etc.

S(q)·P(q) is not always valid and useful!
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Structural Hierarchy (particulate)

Structural information viewed on five length scales. Structural features at larger length 

scales are observed at smaller Q.

Scattering analysis that describes hierarchical structures: Mass Fractal (Teixeira), Unified Fit 

(Beaucage)  combine power law scattering ranges with Rg transitions

Adapted from DW Schaefer MRS Symposium Proceeding 1987
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“BIOMESS”

Adapted from J. Bidlack, M. Malone, and R. Benson. Proc. Okla. Acad. Sci. 72:51-56 (1992)

Model for Grasses

Why neutrons?

• Use D2O for contrast

• Observe changes 

over time in 

pressure reaction 

cell with SANS

Outcome 

New understanding of 

what processes actually 

happen during 

industrial pretreatment.

P. Langan et al., Green Chemistry, 2014
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Treated

SEM

Dilute Acid Pretreatment of Switchgrass

SANS of Switchgrass in D2O

Structural 

Change Onset

Elementary Cellulose Fibril

Cross-sectional View

Q-4

D

Pingali et al.,  Biomacromolecules 2010
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SANS Summary

• Applications are in the nm to µm range and otherwise only limited by  

imagination.

• SANS does not see atoms, but larger, interesting features over many 

length scales.

• Precision of structural parameters such as Rg can be 1Å or better.

• SANS is used alone, but often complementary to other methods, such as 

microscopy, NMR.

• Scattering is similar to diffraction but does not require crystals.

• Data analysis is application dependent, using a diverse set of 

approximations, models and software.
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SA(N)S Reference Suggestions

• Guinier, A., Fournet, G.  1955.  Small-Angle Scattering of X-rays.  John Wiley & Sons, New York.
 The classical work on small-angle scattering. Even though focused on x-rays, much of the theory and data interpretation 
apply just as well to neutrons.

• Pedersen, J. S., 1997. Analysis of small-angle scattering data from colloids and polymer solutions: 
modeling and least-squares fitting.  Adv. Colloid Interface Sci. 70:171-210.
 Contains a comprehensive list of form factors and structure factors that are used for interpreting small-angle scattering 
data. 

• Urban, V. S., 2012. Small-Angle Neutron Scattering. In: Characterization of Materials, edited by Elton 
N. Kaufmann. Copyright 2012 John Wiley & Sons, Inc.
 A concise introduction to theory and practical considerations of Small-Angle Neutron Scattering. 

• Chaudhuri, Muñoz, Qian, Urban (Editors), 2017. Biological Small Angle Scattering: Techniques, 
Strategies and Tips. Springer.
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SA(N)S References continued

• Roe, R. J.  2000.  Methods of X-Ray and Neutron Scattering in Polymer Science. Oxford University 
Press, New York and Oxford.
 Even though focused on polymers, this book gives a very thorough account on the basic scientific principles of small-
angle scattering in a fashion that is accessible to non-expert scatterers.

• Higgins, J. S., and Benoît, H. C.  1994.  Neutron Scattering from Polymers. Clarendon Press, Oxford.
 A comprehensive description on neutron scattering and in particular small angle neutron scattering. Even though 
focused on polymers, the book is very useful for anyone interested in small angle neutron scattering.

• Lectures from the National School on Neutron and X-Ray Scattering: http://neutrons.ornl.gov/nxs

• PROBING NANOSCALE STRUCTURES – THE SANS TOOLBOX, by Boualem Hammouda (NIST): 
https://www.ncnr.nist.gov/staff/hammouda/the_SANS_toolbox.pdf

• DOE BER Structural Biology Portal - https://berstructuralbioportal.org/

http://neutrons.ornl.gov/nxs
https://www.ncnr.nist.gov/staff/hammouda/the_SANS_toolbox.pdf
https://berstructuralbioportal.org/
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Questions?
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1. Zero (0) natural electron density contrast

2. Reducing degeneracy / increasing 
information content of SAS data   

3. Overcoming extremely low signal to noise  
“needles in haystacks”

4. Zooming in on specific features in very 
complex systems – biomass, live cells

5. Combination with other valuable neutron 
traits: fine energy resolution, no radiation 
damage, high penetration/in situ 

Cases for using neutron contrast 
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Complementary methods example: -Amyloid

• Alzheimer’s DiseaseAmong leading causes of death

• Miss-folded peptides form hierarchical ordered fibril structures & plaques

• Structure established using synthetic model peptides and complementary 
methods NMR, SANS, EM

• NMR

− -fold

• SANS 

− Fiber shape

− Diameter

− 6 sheet stack

• EM 

− Overall 

morphology

− Twist

T.S. Burkoth et al. J. Am. Chem. Soc. 2000, 122, 7883-7889

30 nm
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Ellipsoid example: Chlorosomes stable under harsh 
conditions including entrapment in silica sol-gel

Neutron Scattering  probes chlorosome under range 
of temperature, pH and salt conditions

Remarkable stability of the chlorosome, reversible 

association in high ionic strength

K.-H. Tang, L. Zhu, V. S. Urban, A. M. Collins, P. Biswas, and R. E. 

Blankenship, “Temperature and Ionic Strength Effects on the 

Chlorosome Light-Harvesting Antenna Complex,” Langmuir 27 (8), 

4816–4828(2011).

C. aurantiacus chlorosome (green) and 

model ellipsoid form (red) calculated from 

neutron scattering data of chlorosome 

entrapped in silica gel. Green volume 

reconstructed from electron density map 

of free chlorosome reported by Psencik 

et al. 

W.B. O'Dell, K.J. Beatty, J.K.H. Tang, R.E. 

Blankenship, V.S. Urban and H. O'Neill, “Sol-gel 

entrapped light harvesting antennas: immobilization 

and stabilization of chlorosomes for energy 

harvesting,”  J. Mater. Chem. 22(42), 22582-22591 

(2012). 
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Guinier Analysis  
size of any kind of object

Precise Rg is 77.46 Å 
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Guinier analysis for compact particles
I0=0.99866 ± 0.00072094
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Modified Guinier Analysis  
for object extended in 1 dimension

Rod radius = √2 * Rc = 12.9 Å,  exact radius = 13.3 Å
A similar approach exists for thickness of (2d) sheet-like structure.
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IC=0.012324 ± 3.027e-05
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Non-particulate Scattering
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Facility Acknowledgment Statement

• A portion of neutron scattering research presented as 
examples in this introduction used resources at the High Flux 
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Science User Facilities, operated by the Oak Ridge National 
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