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Neutron Contrast
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Small Angle Scattering and Microscopy

Common features

- Size range Tnm-Tum

— Conftrast labeling options (stains / isotope labels)

SANS practical aspects

— No special sample preparation necessary (such as cryo freezing)

- Sample environments available for pressure, temperature, magnetic field etc.

— Non-invasive
— In-situ, time-resolved

Fundamental difference
~ “Real space” image with certain resolution
— Scattering pattern, averaged over volume

Complementarity
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Microscopy : enlarged image
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From scattering angle to scattering vector

Bragg: waves with wavelength A
reflected by sets of lattice planes
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Scattering and Ditfraction (Crystallography)

e Diffraction from crystals, Scattering from anything else (less
ordered)

e« Same basic physics: interactions of radiation with matter
- SAXS/WAXS, SAND/WAND
— Instruments: resolution vs flux tradeoff (diffraction/scattering)
— Diffraction needs crystal lattices, scattering does noft.
— Data analysis is very different in most cases.

o At small g (small angles, large A): observe nm-sized volume
elements, "blobs” NOT atoms

- Scattering length — scattering length density SLD, symbol p

— SA(N)S is sensitive to spatial non-uniformity of SLD:
ASLD = Conftrast — conftrast variation!

#(OAK RIDGE

National Laboratory




Small Angle (Neutron) Scattering Intensity

Interference of wavelets from distribution of nuclei (= structure) adds
up to “net scattering” amplitude (Fourier fransform of structure).

2

(@) =|[ (o(F) - p,)e " d°r

Measured intensity I(g) is the magnitude square of amplitude.

common form: N s B 5
1(q) =[7(A,0) Vp]P(q)S(q) where  P(q) = |F (q)|

® structure form form factor
factor factor amplitude

I(q) also is the Fourier tfransform of the pair correlation function P(r).

Incoming waves scatter off individual nuclei according to scattering
length b (can be + or -).
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Neutron Contrast — Atomic Scattering Lengths

Element | Neutrons X-rays | Electrons
(102 cm) (1022 cm)
*H -0.374 0.28 1
°H (D) 0.667 0.28 1 o
C 0.665 1.67 6 @
N 0.940 1.97 7 @
O 0.580 2.25 8 @
P 0.520 4.23 15 Q
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Scattering

SANS (concept
applies also to X-
rays)
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Increasing SAS information content by neutron contrast
variation
« Block copolymer micelle with deuterated PEO block

* In solution neutrons probe:
— Core only in 100% D,0O
— Shell only in 16% D,0 / 84% H20 I
— Core-shell-interference term only in 60% D,0 / 40%H,0

10 —:*

16%D,0

60%D,0

Intensity [cm" ]
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|

0.001
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We can tune contrast by specific deuteration

8.0f |
D-labeling funing knob I 100%-D protein
O N 6.0f
& | 50%-D protein
(I) 5
50 S' 40 .........
o Y e = = T T
=
100 9 20; protein
U) L
. 100% deuteration is not BT
always what you want - _
1ottt tt 1
» Protfeins, polymers, organic 0 20 40 60 80 100
molecules o
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Sphere

precisely: monodisperse sphere of uniform density with
sharp and smooth surface
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P(Q)
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Fq) = 3[sin(qr) — qr cos(qr)]

(qr)’

0.001



In practice: sphere + constant background
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Some Notes on Background Subtraction

e A crucial step in data reduction/analysis

 Different sources of background (ambient, cell, intrinsic to
sample) often require different freatments.

o« Coherent scattering intensity drops over orders of magnitfude
with g (log scale), incoherent background is constant.

« More hydrogen means more incoherent background, this can
Influence the choice of contrast. (Less background is better.)
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*End of*Part 1

Size & shape of scattering particles

Interacting parficles, hierarchical
sfructures efc.

Summary, references




Spheres of different sizes
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Ellipsoid
aspect ratio 1.5
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Circular Cylinder -with same Rg as the sphere
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Guinier Analysis
size of any kind of object

o At small enough Q anything that could reasonably be considered a

discrete object follows Guinier’'s approximation.
In[1(a)] > q°RZ /3 oR, <1, sphere:R= °R,

1.0 e

0.6
« Modified Guinier approximations e
exist to determine cross sectional =
radius of rods or thickness of |

0.0 Eosssssond
0.001
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Guinier Analysis
size of any kind of object

Guinier analysis for compact particles
l,=1 + 6.4344e-06

R,=77.627 £ 0.0078715 A
Quax*Ry=0.4301

O Sphere Data
mmm Guinier fit
—— Guinier fit

Ln(P(Q))

[| Guinier analysis for compact particles
-0.5 H1,=1.002 + 0.00022913

|R,=78.747 + 0.037728 A

| Quax™Ry=1.2359

_0.6 1 1 1 1 | 1 1 1 1 | 1 1 1 1 I 1 1 1 1 I 1 1 1 1 -6
0 50 100 150 200 250x10

Precise R is 77.46 A
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“Long & thin” cylinder
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Polymer call
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Surface Scafttering - Porod

A
log I(q)
_\ At large q:
- q4 -4
I(q) = q
g
log (q)

Specific Surface Area, S,

lim7(q) =27S,|Ap| ¢

g —>®©

But, fractal rough interfaces: Q*,3<x<4

Diffuse interfaces: x > 4
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SAS Form Factor Modeling
used in structural biology

Ab initio modeling Rigid body modeling

C

Envelop representation Envelop from densely  Envelop from dummy Missing domain represented  Rigid body model + missing  Atomic models derived
using spherical harmonics  packed dummy beads residues forming a chain- by gnsemble qf dummy' loop represented by ‘ from flgad body mo@elmg
compatible model residues forming a chain- ensemble of dummy residues  applying conformational
compatible medel. sampling

Spherical Harmonics (Svergun, Stuhrmann, Grossman ...)
Aggregates of Spheres (Svergun, Doniach, Chacdn, Heller ...)
Sets of High-resolution Structures (Svergun, Heller, Grishaev, Gabel ...)
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Pair correlation function and shape

P(r) : inverse Fourier transform of
scattering function : Probability of
finding a vector of length r between
scattering centers within the
scattering particle.

4 4 4
; o . 0 -
=)
S
o2 2 2
1 1 1
0

00 10 20 30 40i 50 O0 10 20 30 40 50 0 20 40 60 80
I’(A) Dmax
Shape : Modeled as a uniform density distribution that best
fits the scattering data.
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Interparticle Structure Factor S(Q)

I(g) = %(Ap)ZV;P(q)S@')

1014
S iG-(7,,—7) T
s@p=te| 3 L
. a 10—1_
k=1 j=I1 S .
j=k g %
= K
5 S 10—3-
-~ . o ©® () is modulated by o "Wm”H“
- o O interference effects between 107° R
- 10 10
O o radiation scattered by Q (A-1)
© "« O o different scattering bodies.

S(g) examples: hard sphere potential, sticky sphere, screened coulomb etc.

S(g)-P(q) is not always valid and useful!
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Structural Hierarchy (particulate)

10um ¢
3 b size (R) 10um  1um O.1um 10nm 1nm 0.1nm
L 4 4 . 4

1~y R MOLECULAR WEIGHT (M) + +* +
¢ POLYDISPERSITY

M R D,a,Ds S b
/ \ GEOMETRY
@ TOPOLOGY LIMITING GUINIER POROD BRAGG

FRACTAL DIMENSION (D)

Tum ¢

N

0.1um ¢

=

PRIMARY PARTICLE (a)

COORDINATION

10nm ¢ PERSISTENCE LENGTH

SURFACE

ROUGHNESS (Dg )

Tnm ¢ SURFACE FRACTAL (S)

log INTENSITY

LOCAL CHEMISTRY

CRYSTALINITY
BOND LENGTH (b) log Q

Adapted from DW Schaefer MRS Symposium Proceeding 1987

0.1nm <

A4

Structural information viewed on five length scales. Structural features at larger length
scales are observed at smaller Q.
Scattering analysis that describes hierarchical structures: Mass Fractal (Teixeira), Unified Fit

(Beaucage) combine power law scattering ranges with R, fransitions
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Model for Grasses

Why neutrons?

* Use D,0 for contrast

» Observe changes
over time in
pressure reaction
cell with SANS

£ L b /R rr— = Outcome

P. Langan et al., Green Chemistry, 2014 - : New understanding of

what processes actually

happen during

industrial pretreatment.
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Dilute Acid Pretreatment of Switchgrass
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Elementary Cellulose Fibril
Cross-sectional View

Pingali et al., Biomacromolecules 2010



SANS Summary
o Applications are in the nm o um range and otherwise only limited by
Imagination.

 SANS does not see atoms, but larger, interesting features over many
length scales.

» Precision of structural parameters such as R, can be 1A or better.

 SANS is used alone, but often complementary to other methods, such as
microscopy, NMR.

e Scattering is similar fo diffraction but does not require crystals.

o Data analysis is application dependent, using a diverse set of
approximations, models and software.
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SA(N)S Reference Suggestions

o Guinier, A., Fournet, G. 1955. Small-Angle Scattering of X-rays. John Wiley & Sons, New York.

The classical work on small-angle scattering. Even though focused on x-rays, much of the theory and data interpretation
apply just as well to neutrons.

 Pedersen, J.S., 1997. Analysis of small-angle scattering data from colloids and polymer solutions:
modeling and least-squares fitting. Adv. Colloid Inferface Sci. 70:171-210.

Contains a comprehensive list of form factors and structure factors that are used for interpreting small-angle scattering
data.

e Urban, V. S., 2012. Small-Angle Neutron Scattering. In: Characterization of Materials, edited by Elton
N. Kaufmann. Copyright 2012 John Wiley & Sons, Inc.

A concise infroduction to theory and practical considerations of Small-Angle Neufron Scafttering.

o Chaudhuri, Munoz, Qian, Urban (Editors), 2017. Biological Small Angle Scattering: Techniques,
Strategies and Tips. Springer.
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SA(N)S References continued

« Roe, R. J. 2000. Methods of X-Ray and Neutron Scattering in Polymer Science. Oxford University
Press, New York and Oxford.

Even though focused on polymers, this book gives a very thorough account on the basic scientific principles of smaill-
angle scattering in a fashion that is accessible to non-expert scatterers.

e Higgins, J.S., and Benoit, H. C. 1994. Neutron Scattering from Polymers. Clarendon Press, Oxford.

A comprehensive description on neutron scattering and in particular small angle neutron scattering. Even though
focused on polymers, the book is very useful for anyone interested in small angle neutron scattering.

e Lectures from the National School on Neutron and X-Ray Scattering: http://neutrons.ornl.gov/nxs

o« PROBING NANOSCALE STRUCTURES — THE SANS TOOLBOX, by Boualem Haommouda (NIST):
https://www.ncnr.nist.gov/staff/nammouda/the SANS toolbox.pdf

e DOE BER Structural Biology Portal - hitps://berstructuralbioporial.org/
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Cases for using neutron confrast  piaaaeaadiis

1. Zero (0) natural electron density contrast

2. Reducing degeneracy / increasing
iInformation content of SAS data

Intensity fem™]
(=]
C o

3. Overcoming extremely low signal to noise
“needles in haystacks”

a(A™"

4. [ooming in on specific features in very
complex systems — biomass, live cells

end-to-end dimer

5. Combination with other valuable neutron
traits: fine energy resolution, no radiation
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Complementary methods example: B-Amyloid

e Alzheimer’s DiseaseAmong leading causes of death
» Miss-folded peptides form hierarchical ordered fibril structures & plagques

o Structure established using synthetic model peptides and complementary
methods NMR, SANS, EM

~ ¢ NMR
M-Terminus
P LLSLS — p-fold
AR SRRt
T T s 10A e SANS
RT3 :
SRR — Fiber shape
i — Diameter
JT ] 1sA — 6 sheet stack
T e EM
\ — OQverall
RR L morphology
30 nm H"\,.V.x--‘xﬂ VS — TW|St

T.S. Burkoth et al. 3. Am. Chem. Soc. 2000, 122, 7883-7889
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Ellipsoid example: Chlorosomes stable under harsh
conditions including entrapment in silica sol-gel

Neutron Scattering probes chlorosome under range
of temperature, pH and salt conditions

-y
chlorosome 25-75 °C —
- «a» |pH 5.5 -11.0 |- -
-_—— | - - ‘
- > \ “» @ | aggregates
increase P— .
ionic strength ﬁ/ + oxcoss C. aurantiacus chlorosome (green) and
no-salt buffer . .
~ = model ellipsoid form (red) calculated from
CaCly > MgCly >> NaCl > Nabr ~ kci> o, | e neutron scattering data of chlorosome
MgCl, > Mgso, ——— entrapped in silica gel. Green volume
reconstructed from electron density map
Remarkable stability of the chlorosome, reversible of free chlorosome reported by Psencik
association in high ionic strength etal.
K.-H. Tang, L. Zhu, V. S. Urban, A. M. Collins, P. Biswas, and R. E. W.B. O'Dell, K.J. Beatty, J.K.H. Tang, R E.
Blankenship, “Temperature and lonic Strength Effects on the Blankenship, V.S. Urban and H. O'Neill, "Sol-gel
Chlorosome Light-Harvesting Antenna Complex,” Langmuir 27 (8), entrapped light harvesting antennas: immobilization
4816-4828(2011). and stabilization of chlorosomes for energy

harvesting,” J. Mater. Chem. 22(42), 22582-22591
%OAK RIDGE (2012).
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Guinier Analysis
size of any kind of object

Guinier analysis for compact particles
““““““ N 1,=1.0048 + 3.6871e-05

R,=76.96 + 0.034883 A
Qnax*R=0.49062

O Rod Data
—— Guinier fit
== GUINier fit

Ln(P(Q))

Guinier analysis for compact particles
1,=0.99866 + 0.00072094

R,=73.297 + 0.1302 A
Qnax'Ry=1.1402

0 50 100 150 200  250x10°
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Modified Guinier Analysis

for object extended in 1 dimension

461 O Rod Data
' - — Modified Guinier fit for rods
4.8
— i
2 5.0
P~ R
) R
O 52
= i
.)( -
O 54
A\ R
C -
- 5.6
"~ I |Modified Guinier analysis for rodlike forms
[ {1c=0.012324 + 3.027e-05
-5.8 -|R,=9.0941 + 0.01747 A
L Qe R.=1.3143
'60;'||E§""I""I""I""I""I""I""I"' L1l
' -3
0 10 20 30 40x10

Q (A%
Rod radius =V2 *R_=12.9 A, exact radius = 13.3 A

A similar approach exists for thickness of (2d) sheet-like structure.
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Non-parficulate Scattering

Debye Bueche Model for Two-Phase System, Each with Random Shape,
Uniform Electron or Scattering Length Density and Sharp Boundaries

Mean Chord Intercepts:

Physical Concept of the Mean Chord
or Inhomogeneity Length

The fluctuations in scattering power at two points A and B, distance r apart, can be
characterized by v(r) <n2>AV = <nang>ay- For random two phase system: y(r) = e-/a

dx _ A
ag (@ = [1 + Q2a2]2

J. Appl.Cryst., 28, 679 (1957)
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