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At SNS, ~ 2/3 of the operating instruments that
the Detector Group supports use 3He detectors
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Spallation Neutron Source at Qak Ridge National Laboratory

The world’s most intense pulsed, accelerator-based neutron
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High Flux Isotope Reactor at Oak Ridge National Laboratory

.= as well as most of the instruments at HFIR

The United States’ highest flux reactor-based neutron source
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Single output tubes - used individually or arranged
into 1d array




Linear Position Sensitive Detectors (LPSDs)
vacuum compatible, typical installations cover
large areas (10s of m?)
(GE Reuter-Stokes)
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Wide variety of configurations - linear, radial,
or curved about horizontal or vertical axis




Multi-wire, areal coverage (common gas space)




Brookhaven Multi-Wire Proportional Detector for
WAND (HB-2C at HFIR)

120° Curved Multi-Wire Proportional Counter (Brookhaven National Lab)
Currently at PCS Instrument in Los Alamos National Lab, N.M.
Scheduled for delivery to ORNL end of summer



And of course the neutron beam monitors




Helium-3 Detector Deployment at SNS and HFIR

* Over 4600 tubes installed at SNS; ~ 600 at HFIR

— Active lengths from 10 cm to 200 cm

— Tube diameters from 0.8 cm to 5 cm

* Four multi-wire area detectors (soon to be 5)

 Helium-3 pressures from 4 atm to 30 atm



Why do we need to ‘detect’ neutrons ?

Detectors provide us with the information we need to learn about how
neutrons interact with our samples

What do the detectors actually ‘detect’ ?

What we want to know is intensity (relative to the incident beam) as a
function of scattering angle 26 and neutron wavelength A

@ detector

Incident beam / Transmitted beam

@) detector

sample

What detectors measure is neutron interaction location (and at the SNS, time)

location x,y, z — 6 timet — A (v=L/t; p=mv=h/\)

The ‘effective’ size of the detection element is important (spatial and temporal
measurement uncertainty), need for different detector types, no ‘one size fits all’

How do we ‘detect’ neutrons ?



How do we detect neutrons?

* A neutron must interact with matter in a such a way that it gives some indication
of its presence

* With zero net electrical charge, interaction with atomic electrons is not possible
(as in X-ray, gamma, electron detectors)

X-ray photon
3 clectron o

L \
L] )
F

e |

PHOTO-ELECTRIC ABSORPTION
* Instead we must rely on the only interaction available to us -

a nuclear reaction with an atomic nucleus

” 3H (Tritium)
e — & mm) o =
n 3He

Y



What materials can we use for neutron detection ?

It turns out there are only a few isotopes for which the neutron has a high
probability of interaction with the atomic nucleus, and can be considered
candidates for practical thermal neutron detectors
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Relative Cross Sectional Areas (at 1.8 A)

Cross section has units of area [barns]
It can be thought of as the effective size of the target nucleus

Boron-10 Helium-3

thhlum—E
3840 b 5330 b
940 h

/
1 barn

diameter ~ 11 fm
1 barn =102 m2 = 1024 cm? = 102 fm?

(1 fm = 10-15 m)



Important Nuclear Reactions for Neutron Detection

In addition to having a high absorption cross section (probability), the nuclear
reaction must produce charged daughter products which can then be detected by
more conventional detection technologies

n+3He - 3H + H + 0.764 MeV
n+6%Li > 4He +3H + 4.79 MeV

n+1B — 7Li+ “4He + 0.48 MeV y-ray + 2.3 MeV (93%)
— TLi+ “He + 2.8 MeV ( 7%)

Note the Q values - thermal neutron kinetic energy (10s of meV) cannot be directly
measured



Helium-3

Natural abundance 0.000137%
By-product of radioactive decay of tritium (nuclear weapons program)

3H—3He+e+V, T,,=12.3y

U.S. mass production of tritium ceased in the mid 1990°s (weapons reduction)
U.S. demand increased after Sept 11, 2001 (portal monitors, border security)
In 2008 a critical shortage of helium-3 in the U.S. was realized (supply << demand)
Efforts to develop alternate detector technologies for large area coverage

Straw Tube detectors, Multi-blade detectors ('°B)

« BF, commonly used as neutron gas detector prior to the widespread availability of He-3
— but BF, is a toxic, corrosive gas (He-3 is inert)
— nevertheless, some facilities have recently revisited BF; due to the He-3 shortage



The n-3He reaction: n + 3He — 3H + p + 764 keV

Momentum Conservation - trajectories antiparallel

Energy Conservation — KE split inversely proportional to mass (3:1)
* proton Kinetic energy = 573 keV

« triton kinetic energy =191 keV

lonization
Reaction products lose energy g, Centroid
. . . - P
through interactions with gas atoms y/ 573 keV
(excitation and ionization) TH &
191 keV

. Sphere of centroids
Average energy per pair W~ 30 eV - from many neutron

: ~events
~ 25,000 electron-ion pairs (4 fC) \

W > IP (ionization potential) —5 :
Distribution of centroids
projected in one-dimension
FWHM ~ 0.8 x proton range

V. Radeka, DOE BES MNeutron&Photon Detector Workshop, Aug 1-3, 2012



Proton Range in 1 bar He-3 ~ 5-6 cm
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Detector Fill Gases: Stopping and Quench

- Stopping gases are added to
reduce size of charge cloud

— Ar, C;H,, CF, in common use

* In addition, polyatomic gases
needed for photon quenching

UVIVis photons emitted via
excitation interactions, must be
absorbed to prevent secondary
ionization elsewhere in tube

Polyatomic gases de-excite
non-radiatively (rot, vib modes)

C;H;, CF,, CO, in common use

stopping gas can also act as
the quench gas

* No electronegative gases

[

Proton Range [mm]

propane plus
6 atm He-3

0.1

Stopping Gas Pressure [atm]

V. Radeka, DOE BES MNeutron&Photon Detector Workshop, Aug 1-3, 2012



The Helium-3 Gas Proportional Detector

neutron

anode /
JH

cathode
3H/":::::—-_

HV

%xL

3He gas

1

I I{>__.

preamp

* Positive HV on wire, E field falls off as 1/r (strong near wire)

* Electrons drift in toward wire (anode), ions drift out toward grounded
tube wall (cathode), but at velocities ~ 1000 times slower

* Current pulse is measured, proportional to charge collected on wire

(Shockley-Ramo theorem)

4 fC is impractical, need gas gain to amplify charge signal



Electric Field and Gas Gain

In large E fields, electrons can attain
sufficient KE between collisions to ionize a
neutral gas atom, producing an electron-ion
pair, process creates an avalanche of charge

(Townsend discharge) Monte Carlo simulation

Matoba, et al.
IEEE Trans Nuc Sci, Vol. NS-32, No. 1, 1985



Gas Gain

Diethorn Model BIO SANS vs. EQ SANS Gas Gain
In|G| = (V In|2J/AV In|bla]) [ In{V/pa In|bla[} - In [K] ] 7
|| — —Paoat-207 B0 sANS ] 7 ’//
Gain approximately exponential / //
with voltage G ~ eV . ” //
—
Factors include: e =
- applied voltage V 8 7~ /
 anode and cathode radii a and b - )/ //
. gas pressure p ——
- gas specific parameters AV, E./p
AV = potential difference between ionizing collisions 00£+00
E. = critical electric field for gas multiplication T T e T

Plot Courtesy of GE Reuter-Stokes

Gas gain of LPSDs typically a few hundred (charge ~1 pC)



Preamplifier
signal current in — voltage pulse out

anode neutron

\ cathode / HV

o % i‘lg—zL
SHe gas

1 p“Feamp

I~ .
- v - Preamplifier
Signal
BIAS RESISTOR I >
— Ry M
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Time



Differential Pulse Height Distribution and the
“Wall” Effect

Thermal peak
C-valus
deposited in gas

Lostp Lost *H
Energy ENErgy

T ;*"_I"“x P

For interactions which occur T’L" \ (2 ) (e
near the tube wall, either the W N S
proton or the triton can reach ; AN
the wall before giving up all of AN - produer Ny
. i Il—el
its energy to the gas. o L R

"Wq:rl effect” ;

cohtinuum

The result is less than the full
amount of charge collected on
the wire.

o ———————

[ ..

191 573 764 keV
Deposited energy E

Wall effect depends on tube
dimensions and gas pressure



Discriminator

« Circuit which passes all signal
above an (adjustable)
threshold voltage, and rejects
everything below it

« Some circuits contain both
upper and lower
discriminators, and pass only
what falls between

Input Qutput
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A Y
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Wall Effect and Discriminator Setting

. . . . n *-" Maestro g@@
® Typ I cal Iy set d Iscrl m I n ato r J u St File Acquire Calculate Services ROI Display  Window
|6 ®|T(ud| KK @K wfa Gzl 2[O|[s| [ e =

below the low energy neutron
shelf to reject counts due to
gammas and electronic noise

. Pulze Ht. Analysis
Q@@ Start  1:24:58 PM
72442014

Reat 44300200
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Nt

Peak
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« Wall effect more pronounced in
small diameter (larger surface to
volume) or high pressure
detectors (short attenuation
length)

Marker: 233 = 239.00 kev 0 Cnts




Single Ended Tubes - Triple Axis and Powder
Diffractometer (HFIR)

 Charge sensitive preamplifier plus voltage
discriminator

 High voltage applied to anode wire

* All pulses with voltage above discriminator
level are counted as neutrons

 No positional information

— other than event occurred
somewhere inside the tube

— essentially a counter




Linear Position Sensitive Detectors (LPSDs) and
Resistive Charge Division

* Modular Assembly “8 packs”
 Resistive anode (few 1000 ohms)

* Anode at HV (1.5-2kV typ)
 Preamplifier at each end of tube
 Current divides according to resistance

it sees to preamps !

« Current from both preamps is HV = \ i Preamp A
measured, compared R, +1 < Va
« Mathematical expression n—|rep .
A~ B
(A-B)/(A +B) 0
o : : Rg Va+ VB
determines interaction location
JT_— -1 «
| | [,
11 |

v Preamp B
] VB




Wide Range of Pulse Shapes are possible ...

0L B B

Pulses at right are from
interaction near tube end

Pulses below are from
interaction near tube center

tl eleo By NEIEEE - ¢ s 4Jo»

B BI-B o] B ;- S

ERCCEEEEL - B Dol B
Scales
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Neutron detection response along the anode wire
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Area Detectors - BNL MWPC, WAND

Multi-Wire Proportional Counter WAND Detector
(Brookhaven National Laboratory) (Ordela, Inc)



Multi-Wire Proportional Counters from BNL
(SNS Reflectometers)

These detectors date back to the 80’s, and still are in service!

e 20 cm x 20 cm active area
* 1.5 cm gas depth (*He + C;H,)

« X and Y orthogonal cathodes with _ )
anode between at + high voltage Window

 Charge at anode induces signal on Cathodd -
cathodes g

) Anode Wires

>~~~ Cathode

* Preamps every 7" wire (1.1 cm) i
" " " " " T Y,
* Resistive charge division between each ~ “*>u, "
. ' Ring:
pair of nodes (preamps) g g

* Low noise, low gas gain (~ 25)
1.5 mm spatial resolution (x and y) Interpolation based on

4 us dead time per pulse (C-A)/(A+B+C)



PSDs with Rise Time Encoding
(HFIR Neutron Residual Stress Mapping Facility)

10 cm long x 5 cm wide active area
2 cm active depth
He + CF, at 6.9 atm to give
efficiency > 65% at 2 A
Entrance window 2.5 mm 6061 Al
Anode and Cathode wire planes
RC or “rise time” encoding
(Borkowski-Kopp)
Two preamps — one at each end of cathode
Bipolar shaping of signal pulses

Difference in zero-level crossover times is
linearly proportional to neutron position

Ordela model 1155N PSD




Neutron Beam Monitors (Ordela)

 Low gain (~ 7) gas proportional detector
 Two or four anode wires
* Low efficiency (10 - 10- typ)
* 3He or N conversion gas
(*N cross section ~ 1.9 barns)

Note: beam monitor gas is essentially non-attenuating, but the wall thickness
is 2 mm 6061 aluminum x 2 =4 mm per monitor

attenuation ~ 1% per mm (for 1A)



What properties are important in the selection of a
neutron detector ?

..« Some or all depending on the instrument

Resolution is the ability to distinguish between
 Spatial Resolution two closely spaced events (in space, time, energy)

 Timing Resolution
* Detection Efficiency

« Count Rate Capability/Dynamic Range I
« Gamma Efficiency/Discrimination ey
 Cost/Areal Coverage

 Long Term Reliability/Maintainability

1 1 ]

g+

Fig. 8.1. Demonstration of the Resolution Capability of the Three
Types of X-Ray Detectors for the Silver K Spectra Obtained from
®Cd Source.

Borrowing an Example from X-Ray Spectroscopy

Courtesy Philip G. Burkhalter and William J. Campbell
U.S. Bureau of Mines, College Park, Maryland



Slit Mask to Measure Spatial Resolution

Three Slits in Neutron Detector Response
Shielding Mask (BAL) Through Three Slit Mask

o



Timing Resolution and Parallax

Finite detector depth d contributes Parallax contributes to spatial

to uncertainty in measurement of (and to lesser extent) temporal
detection time uncertainty
——d—— "
Ax A
n —=—==—9> ////
”
P 7
Worst Case n~’ 0
At~d/v, -=—=»

At the SNS, neutron events are time stamped to a precision of 100 ns
But what is the uncertainty in this measurement (for 1.8 A neutrons, Vv, ~ 2 mm/ys)



Neutron Detection Efficiency

efficiency =1 - exp(- npod)

Plots below for gas depth d =1 cm

100

—_—

90 | P=20 atm_~— _— | __
n = number density 80 p=10atm -
p = 5atm
= 19 3. 70
2.7 x 10" /cm*-atm < /7
p = gas pressure [atm] 9 o Iy d
o(A) = cross section [cm?] § 40 //// //
(function of A) 30 1/ /’
d = gas depth [cm] 2/
10 7
0

Wavelength [A]

For beam monitors, efficiency = npad



Gamma Efficiency

Gamma rays interact with matter
primarily through

— Photoelectric

— Compton

— Pair Production (>1.02 MeV)
Strong dependence on Z

Combine this with low number
density of gases ~ 10"° - 1020

Totd Cross—section (bams/Mmokecuie)

Helium-3 detectors have low
gamma efficiencies

(typica"y< 10'6) Q B T 1 lTlrrl|_| ) ITITIIjKlJU T 1 ;,—”l:o

Pnoton Energy  (MeV)




Lifetime and Aging

» Formation of polymers which deposit on
wires

— hot spots or dead areas

* Polymerization depends on gas purity
and composition, also count rate

Question -

* How long will it take to use up the
helium-3 in a typical gas detector

Answer -
« Assume 10*n/s percm® x mwx 107 slyr
10 atm = 3 x 10%° gas atoms per cm? Images courtesy of
So, would deplete ~ 1 in 1,000,000 P. Krizan, lonization Counters

He-3 atoms in 1000 years !



EVENTS =25343 3=0.18167 A
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