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Examples of Analysis and Reduction

* Overview
 Early Days at ORNL

* An example of magnetic excitations in Gd
— Studying this magnet as

 Instruments change, data sizes increase, and analysis methods
change

* Novel Processing — Event based Reduction
— Continuous T scans
— Pulsed Magnet

« Complex analysis

— Moving from simple fitting to more complex models to
computing intensive codes

e Ab-initio

OAK RIDGE

National Laboratory

HIGH FLUX | SPALLATION
ISOTOPE NEUTRON

REACTOR | SOURCE



Wollan teams with Shull

* In the early days counts were fastidiously recorded in a
notebook.

« Shull and Wollan at the Graphite reactor
* 1994 Nobel Prize
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First neutron powder diffraction

Pioneered by Wollan and Shull in the late 1940’s.
Monochromatic

A= 2dsinf
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Fi16. 1. Arrangement of apparatus, showing the mono-
chromating crystal (detailed in left ter) collimati | 1
e et s “sectiometer wies) loomrion ™8 E. O. Wollan and C. G. Shull, The diffraction of neutrons by
powder specimen and counter. crystalline powders, Phys. Rev. 73, 830-841 (1948).
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Computer controlled acquisition
* Increased Flux (New high flux reactor)
* More efficient detectors

Sharron King (left), adjusting the rf spin reversal circuit with Ralph Moon (middle), and Jim Sellers.
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Gd

- Study Spin waves to \ \ C \
understand interactions | \
* Conduction electrons mediate ' ‘E.‘
exchange \ ——
« Sample A N N
— “Textbook” HCP localized “I&
Ferromagnet? k‘ <)
— [.6Jg moment \h\\ N |

: L \
— Hexagonal lattice | “‘_

a=b=3.643, c=5.781 — < \
— MW canted ~ 30° from ¢ \ |

- PR 165, 733 (1968); PRB 5, 997
(1972)

OAK RIDGE

National Laboratory

HIGH FLUX | SPALLATION
ISOTOPE NEUTRON

REACTOR | SOURCE



Triple axis is useful for measuring spin
waves

Monochromator Secondary shutter

No collimator Collimator (C2)
Cold guide 4 Stationary shield
i Shield wedge
* Monochromator crystal B sl =
= o — |

(axis 1) selects a narrow
iIncident energy

Wavelength dlStrlbUthn Optional beryllium filter - i . iﬂg?;:;‘:’(%)
Moo dataoic =2 5ot o4
* Analyzer crystal (axis 3)

Monochromatic beam stop _—a

selects a narrow final
energy distribution

* AXis 2 selects orientation
of sample

 Straight forward to perform
scans in E at constant Q
or vice versa
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Mapping the Dispersion
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Data Analyzed

» Used Multiple
exchange
parameters to
characterize RKKY
Interaction
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P. Lindgard PRB 17, 2348(1978)
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SEQUOIA - highly pixelated array

Detector Vessel

Enclosure

fi?tmp'e Equipment Poly External Shielding

Incident Beamline Crane Control Cabin

Vacuum
T, Chopper ‘ - DAS Systern
Monitor
Steel Shielding Beam Stop

Get Lost Tube

Al Beam Stop
| ¥ Support Frame
ol g =1 e Sl detectors

a Detector Frame

_ Internal Shielding
Monitor

Fermi Choppers Sample Vessel and
Concrete Shielding Vacuum Isolation Valve

Guide

G. E. Granroth et al. Physica B 385-386, 1104 (2006). J. Phys.: Conf. Ser. 251, 012058 (2010).



Volumes of Data collected overnight
- Take a series of
constant E slices . DeltaE: 1.0 mey

 Each orientation
adds a new one.

Figure1 EI@

File Edit View Insert Tools Desktop Window Help
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Data reduced in similar way

* Cutting
volume data

* Also lots of
iIntensity
information

* Provides
details of
itinerant
compontent
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More Modern Analysis

* Modeled with Spin W

Spin wave dispersion: ! (Q) Spin wave dispersion: ! (Q)
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Event Data Processing

* Neutrons are recorded on an event by event basis

— Alist of pixel positions and time of detection
— Can do

« Continuously changing parameters such as
— Temperature
— Sample rotation
— Battery charge
— Gas loading
— AC electric field

» Time synchronized collection like pulsed magnet

— For details of the algorithms for event data see
* P. F. Peterson et al. NIMA 803, 24 (2015)
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POWGen

Powder diffractometer

Fixed detector array

A =2dsinf

Tof encoded wavelength

Data typically displayed in d

eee00 Verizon F 12:12 PM < )
& monitor.sns.gov ¢
OAK RIDGE |iehiix | 2 199 | 1ogout
National Laboratory | REACTOR

PG3 Run 29576

home N pg3 N |ptS-17223 > run 29576 live menitoring: status | runs | PVs

previous | next

Run title diamond

Run start July 26, 2016, 6:49 p.m.
Run end July 27, 2016, 9:54 a.m.
Duration 54343.4 sec

Total counts  6.31343e+08
Proton charge 5.09222e+13

Download plot data points
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Powder Diffraction - Event Filtering

* Routine for continuous T scans
— Scan pauses when beam down

* Interface for facilitating filtering

proton-charge (pC)

1.55x107 -

1.50x107 -

1.45x107

Filter Events Interface o A\ &
File / Run PG3_21638 Browse Load
Refresh PG3_21638_event - Use
Log Name SampleTemp340
300
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o 200
T
o
o
&
g 150
a
E
]
[
100
50
o 5000 10000 15000
Time (seconds)
Starting Time Set Stopping Time Set
Output Name | tempsplitted Splitter Title
Filter By Log Filter By Time Advanced Setup
sample Log SampleTemp340 - Plot
Mean 1.52316e+02 Time Average 1.52333e+02
Frequency 9.77648e-02 Log Size 1777
Minimum Value Maximum Value
Log Step Size 2 Value Change Direction | Both -
Log Value Tolerance Log Boundary Centre -
Time Tolerance Filter
?
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1e+04

Time (sec)

1.5e+04
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Working with Event filtered data

» Split into as
many T bins as
one wants in
this case every
S degrees

* Plot as another
dimension

File View ColorMap Line Peak Help
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Slice viewer for MultiDimensional data
sets

* Allows one to

- o x
File View ColoMap Line Help
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Corelli

 Single Crystal
diffractometer

 Designed for diffuse
scattering

» Can discriminate elastic
and inelastic scattering
truly elastic scattering

* Also has low angle
bank, ideal for
magnetic scattering

* Fixed detector array
A =2dsin6
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TOF Neutron Diffraction

- wavelength is encoded in
TOF 1 =2dsin8 T

- Fixed detector array "

» Laue pattern; but TOF |
allows identification of LA O
iIndividual peaks

- Means multiple Bragg o

reflections for a single
orientation

Qc
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Interface to pulsed magnet

Pulsed Magnet Control
Applied Valves

Enable & or @

Always On o

Delay From Tsync 10.0us 10.0 us

| o I
D
" Minimum Repeat Time 4.0 min 4.0 min
» Send trigger R

Chl ADC Parameters
Applied Valves

based on when

ADC Threshold 10mv 10 mv

ADC Range +r10v | +-10v s |

proton hits the

t r et Coil Interlock Apply changes status:  ldle
i l - Alarm ‘
Request pulse

Reset @ Last command status: Success

* Use offset to
set field at a
given
wavelength

- r
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TOF neutrons + pulsed magnet

T T T T

- Independently vary field f
and wavelength band as 20 ]

a function of time

B(T)
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Adding additional filters

* Filter out temperature excursions too, multiple

filters can be applied

t—t, (ns
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T(K)

D. Schulze Grachtrup et al. PRB 85, 054410 (2012)

— sumd_h_sum
— H0_d_h_sum

3
d-Spacing (A)

Field dependence of 100
peek consistent with the PM

phase
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Vision
* [nverse
Geometry

— Crystal
analyzers select
a specific final
energy

— Initial energy is
determined by
TOF

— Focuses large
scattering
volume onto a
few detectors
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VISION: world’s first high-throughput
inelastic neutron scattering instrument

* 4000 x TOSCA at ISIS, 1 TB of data/day

e INS measurement in a few minutes to a few

hours

« Sample changer is being designed and will be

ready by 2016

» Expecting tens of samples a day to be analyzed
* DFT modeling of INS spectra is essential in data

analysis and interpretation

OctaMethyl POSS (1 gm) Measured at VISION

_IT T T T T [ T T T T [ T T T T [ T T T T I T T T T

1,500 |-

— Run time: 0.18 min 7
Run time: 1.45 min
Run time: 5.72 min ]

— Runtime: 23.3 min| 7
Run time: 92.1 min

1,000 |-

500

Normalized intensity

20 30
Energy transfer / meV

Major challenges in
computation

Dedicated computer cluster
required
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Density Functional Theory

» Assumes only valence electrons
are relevant

* uses effective wave functions to
describe bonding

 Works on each atom in a unit cell

* Thus determines (without fitting)
— Structure
— Electronic structure
— Lattice vibrations
— Well suited to molecular vibrations

° |\/|any packages Walter Kohn
_ _ Nobel Prize Chemistry 1998
* Require a lot of computing
resources
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VirtukES Cluster - Hardware Specs

Dual 16 core Intel Haswell E5-2698v3
2.3 GHz Processors per node

50 compute nodes

1,600 (non-hyperthreaded) cores
128 GB memory/node

6.4 TB Total memory

Each node has 10Gbe and Infiniband
networking for connectivity.

Installed as part of the ORNL
Compute and Data Environment for
Science (CADES)
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Integrated modeling for Vision

Computer modeling is
crucial to understand
. 1 Fundamental transiti
and Interpret INS data 5 —— 1st overtones andscoc:rr:ts)inations

2nd overtones and combinations
3-10 quantum events

Total calculated

Measured at VISION

w
" 1 L

INS Intensity (arb. unit)

O — : . T 1
0 500 1000 1500 2000

CASTEP Neutron Energy Loss (1/cm)
VASP Vibrational modes INS simulation Simulated INS
Quantum g and frequencies g (aClimax) g spectra
Espresso 9
Gaussian - Measured INS
Data reduction and spectra
Sample —-> VISION —-> analysis (Mantid)
—>» | Measured diffraction
Structure- :
dynamics —>» | Understanding mechanisms and properties at atomic level
correlation
Peak assignment . Mapping out the local potential energy profile using finite
(An)harmonicity displacement, frozen phonon, molecular dynamics
Phase transition | =—>| Revealing the kinetics and the transition pathway 4

J T T



Summary

- Gd
— Can now map volumes of excitations (~30GB of data)
— Volumes reveal information about symmetry

— Tools like Spin W or Spinwave Genie make spin wave
calculations common place

— Similar changes have been seen for other techniques,
e.g. diffuse scattering

* Event based data enables new types of
experiments

* Integration of ab initio codes and HPC is enabling
more science
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YFeO; a more complex system

- Many exchange
terms

* Viewed with
Mantid/Paraview

 Modeled with
Spin Wave
Genie
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YFeO; A more Complex System
) Si-S;—Ja Z(i,j>’ Si-S;

H=-J Z(Z}J
— D ZRj:Ri—i-a(a“::I:Q) §-5ix5;
— D> ZRJ'IR@'—I—CL(JAJ:I:@) 28 x5,
SRS (S KLY (87

70 2D1
0= — +
2 21 +K.— K,
2¢
b= 2D,
- 4J,-8J,— K,

-

S. E. Hahn et al. PRB 89, 014420 (2014)

SPALLATION
NEUTRON
SOURCE

OAK RIDGE

National Laboratory

HIGH FLUX
ISOTOPE

REACTOR
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UISA, recrioes one hall of the 1984 Nobel Prize
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Research reactor
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Wollan died in 1984. His surviving family members were Shull’s guests at the Nobel ceremonies.
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