Modeling of

Quasi Elastic

Neutron Scattering

with

Molecular Dynamics Simulations

The neutron lifecycle talks

Jose Borreguero Neutron Data Analysis and Visualization Division

Overview

- ☐ Spectrometers at SNS measuring Quasi Elastic Neutron Scattering
- What is Quasi Elastic Neutron Scattering?
- Connection with classical self-diffusion and molecular dynamics simulations
- Simulations complementing experiments
- Experiments refining a simulation force-field

Spectrometers at SNS measuring QENS

QENS Spectrometers at SNS

BASIS – Backscattering Spectrometer

QENS is most sensitive to Hydrogen

Materials rich in hydrogen?

- Water!
- ☐ Biological molecules (proteins, DNA, RNA, drugs,...)
- Polymers
- Porous materials storing hydrogen fuel

What is QENS?

The Scattering Event

$$\vec{Q} = \vec{k_i} - \vec{k_f}$$

$$E = K_i - K_f$$

Elastic:
$$E = 0$$

Quasi elastic:
$$E \ll K_i$$

Inelastic:
$$E \ge K_i$$

Quasi elastic means "almost elastic collision"

Typical QENS Spectra

Intensity is presented as:

- \Box Energy dependent ($E = \hbar \omega$)
- ☐ Sliced in momentum transfer *Q*

The Shape of the QENS Peak

Two contributions shape the peak:

- 1. elastic scattering
- 2. self-diffusion

Goal: extricate the self-diffusion term

Energy transfer (ω (μeV))

The broadening of the peak contains the information about diffusion in the sample

Intensity (counts/μeV)

Connection with classical self-diffusion and simulations

From Diffusion to QENS spectra

What is the probability of finding classical particle i at position $\vec{r}_i(t_0) + \vec{r}$ at time $t_0 + t$ if the particle was at position $\vec{r}_i(t_0)$ at time t_0 ?

Energy transfer (ω (μeV))

We calculate I(Q, t) from the simulations

Simulations complement experiments

Why care about simulations?

We **know**...

where the atoms have been....

where they are now.....

and where they will be.

...while QENS data informs on motions averaged for all scatterers

The way to go:

- 1. First, make sure the simulation produces the same QENS than the experiment
- 2. Then, go dig deep in the simulation for atomistic details

Thermophilic Rubredoxin

□ bacteria found in super-heated deep sea vents

□ RdPf – small iron-sulfur protein

Electron transfer protein

National Laboratory

Comparing the area under the Peak

Experiments

Sudden broadening for T > 220K → Increased mobility related to function?

Constructing the Primitive Cell

☐ The sample is a powder composed of micro-crystals

h=0.37 (484 water molecules)

Simulation must mimic the sample and the environment conditions

Comparing Experiments and Simulations

Preferential route for Fe oxidation

Dynamics of hydrogen bond network

☐ The rate of formation and breaking of water-water hydrogen bond around the protein is temperature dependent

RNA and Nanodiamond Applications

RNA Nanotechnology

[1] S.A. Jensen *et al.*, *Sci. Transl. Med.*, **5**, 209ra152 (2013)

[2] P. Gao, Nature Nanotech., 5, 833 (2010)

ND Potential Applications

- [1] Chow et al., Sci. Transl. Med., 3, 73ra21 (2011).
- [2] Markel et al., Sci. Transl. Med., 3, 73ps8 (2011).
- [3] V. M. Mochalin et al., Nature Nanotech., 7, 11 (2012)

RNA-ND COMPOSITE CAN GENERATE SIMILAR TECHNOLOGY !!!

BUT, First we have to understand the fundamental physics ("Dynamics") of RNA+ND composites

Dynamics of RNA adsorbed in Nanodiamond

QENS experiments

RNA more mobile in the presence of nanodiamonds...why?

MD Simulations

Simulation must mimic the sample and the environment conditions

Comparing Experiments and Simulations

Water Exchange on a Mineral Surface

- Barite (BaSO4) nanoparticles
- ☐ Water exchange rates may limit the rate of the mineral surface

How long does water stay bound to the mineral surface? → Water dynamics

Simulation of water near Barite surface

Simulation must mimic the sample and the environment conditions

Comparing Experiments and Simulations

Identification of Binding sites

Four distinct sites where water binds the mineral

Following the history of every water

Experiments Validating Simulations

Problem: Often simulations do not reproduce the QENS data

Solution: Modify the forces (potential energy) between atoms until simulations fit the experiment

Refining Torsional Barriers

An Infrastructure to Refine Interatomic **Potentials**

Lon Out and Exi

National Laboratory | OAK RIDGE | COMPUTING FACILITY

Summary

- ☐ A QENS experiment tells us of the average diffusion properties.
- ☐ Simulations are rich in detail, but first make sure they are reliable.
- ☐ QENS data can help us correct an unreliable simulation

Thanks to

Niina Jalarvo Ken Herwig Dean Myles Xiang-Qiang Chu Eugene Mamontov Simulations Andrew Stack Vickie Lynch Eric Lingerfelt Pratul Agarwal Monojoy Goswami Debsindhu Bhowmik Gurpreet Kau Dhinsa

