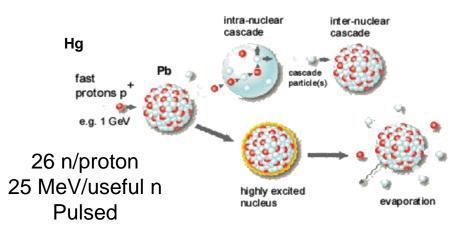

Implementing the ORNL 3-Source Strategy

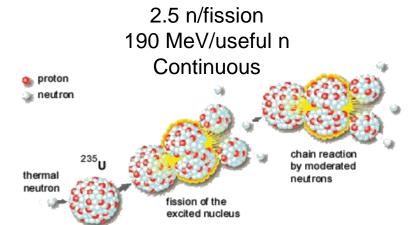
Presented at

Neutron Day Seminar Series

Ken Herwig Neutron Technologies Division Oak Ridge National Laboratory

April 26, 2018


ORNL 3-source strategy – develop instruments and scattering techniques on the source that delivers optimal performance


- Exploit the strengths of the current HFIR and SNS-First Target Station (FTS)
 - Improve the science productivity of the current instruments with major upgrades (39 projects have been prioritized since 2015 start at a total cost of \$43.6M)
 - Build new instruments at HFIR and SNS-FTS that take full advantage of source strengths and will remain relevant in an SNS-Second Target Station (STS) era
- Maximize the strengths of HFIR and SNS-FTS for neutron scattering
 - Explore opportunities to improve the HFIR cold source and guide configuration (x2 improvement)
 - Replace SNS-FTS H_2O reflector coolant with D_2O (20% 26% gain on high resolution moderators)
 - Execute the Proton Power Upgrade Project (PPU): 2/1.4 = 43% gain across all FTS instruments
- Plan for a future STS that is optimized to produce high peak brightness beams of cold neutrons
 - Some current instrument capabilities will be better served at STS
 - Coupled moderator at FTS can be replaced with a high performing p-dc moderator

ORNL is home to two advanced neutron sources with different strengths

Apples and Oranges – What about power?

- Reactor power (MW) is the thermal power released by fission reactions
 - Example, ORNL's HFIR is 85 MW reactor

$$\frac{n}{\sec} = 85 \bullet 10^{6} \text{ W } x \frac{\frac{J}{\sec}}{W} x \frac{1 \text{ n}}{190 \bullet 10^{6} \text{ eV}} x \frac{6.24 \bullet 10^{18} \text{ eV}}{J}$$
$$= 2.79 \bullet 10^{18} \frac{\text{ n}}{\sec}$$

- Spallation source power is the power of the proton beam
 - Example, ORNL's Spallation Neutron Source at 1 MW proton beam (1 GeV protons @ 1 mA, ~1.04•10¹⁴ protons/pulse, 60 Hz)

$$\frac{n}{\sec} = 26 \frac{n}{p} x \ 6.24 \bullet 10^{15} \frac{p}{\sec} = 1.62 \bullet 10^{17} \frac{n}{\sec}$$

On a time averaged basis HFIR makes
 ≈ 17 times more useful neutrons than 1 MW SNS

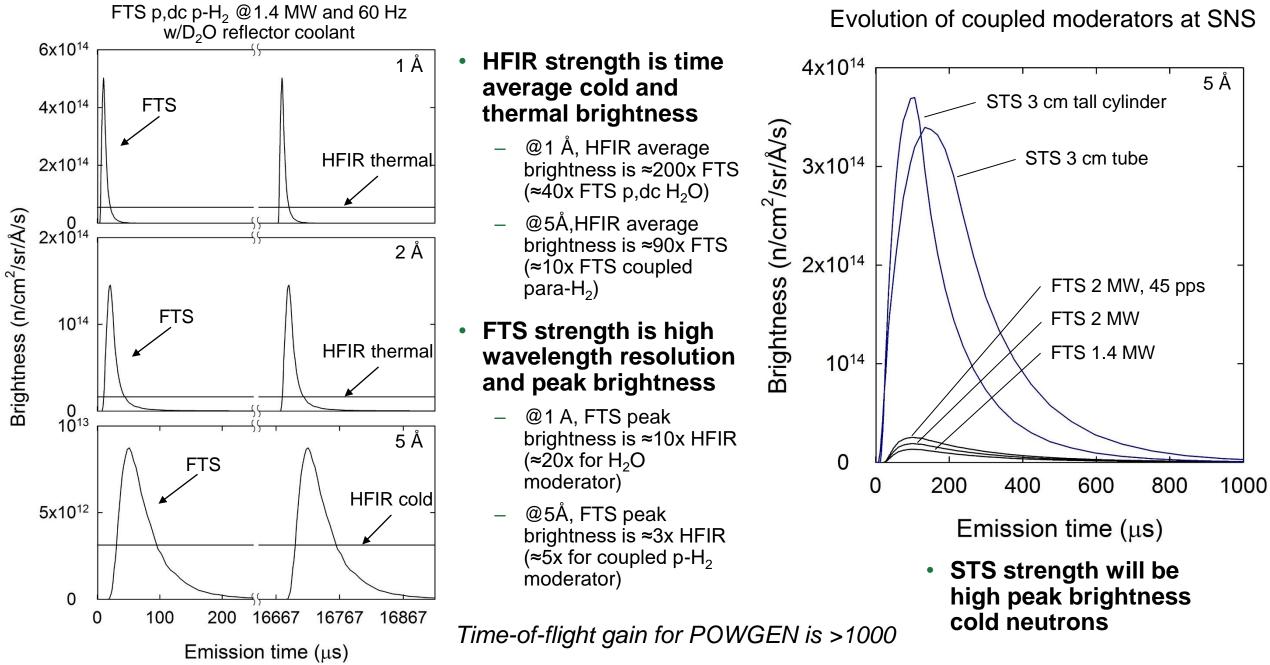
4 Neutron Day Seminar Series April 2018

Upgrading SNS to a world-leading fourth-generation neutron source

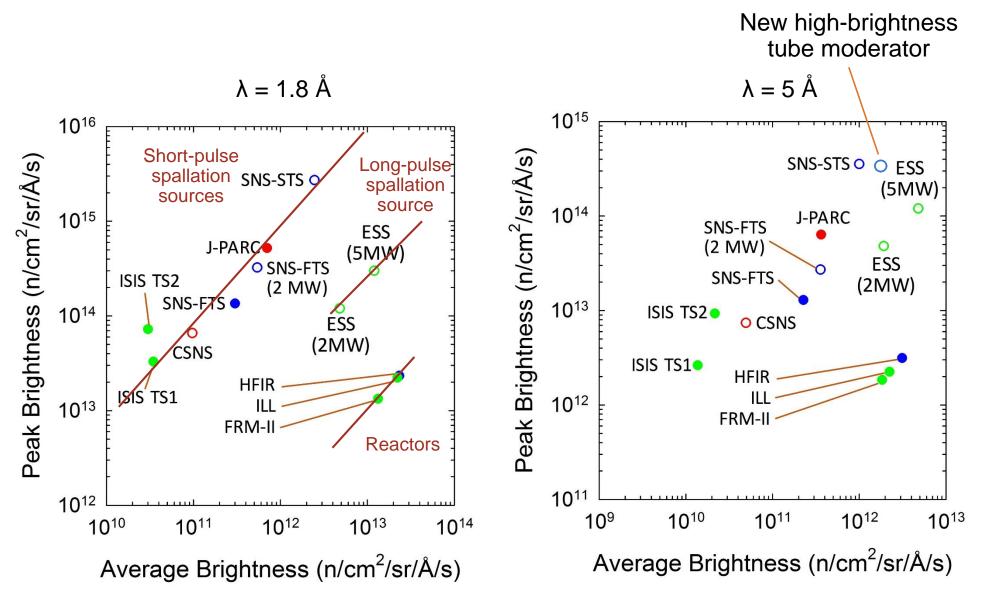
SNS-PPU

- Increases power capabilities of existing 60 Hz accelerator structure from 1.4 MW to 2.8 MW
- Increases power delivered to first target station (FTS) to 2 MW
- Increases neutron flux on available beam lines
- Provides platform for construction of STS

CD-1 Review: May 2017 CD-1 approved: April 2018


SNS-STS

- Initial suite of 8 beam lines, with capacity to accommodate 22 beam lines
- 700 kW diverted to STS by additional accelerator systems
- 15 Hz repetition rate, enabling broad dynamic range
- World's highest brightness short-pulse source optimized for cold neutrons
- 300,000 ft² of new infrastructure


Integrated Systems Review: April 2017

Strengths of the ORNL neutron sources -

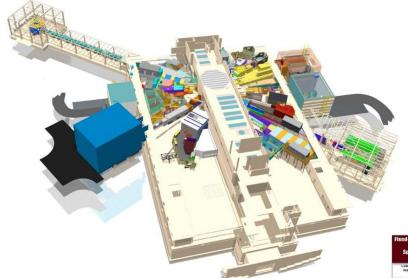
Strengths of the ORNL neutron sources

ORNL neutron sources – now

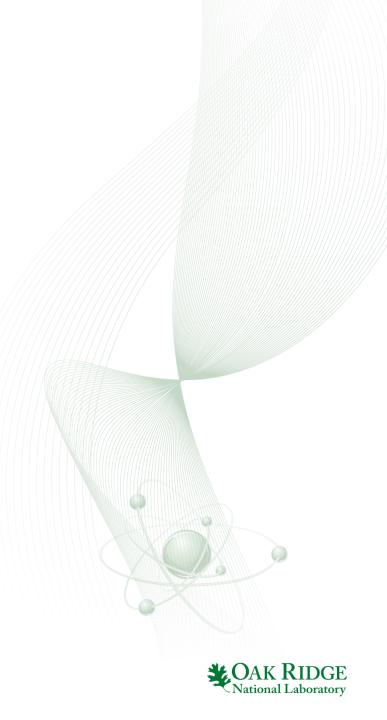
	SNS-FTS (first target station) 60 Hz, 1.4 MW	HFIR 85 MW
	Poisoned, De-coupled Moderators (1 thermal, 1 cold)	Thermal Beam Room
•	 Atomic scale structure and processes Strengths: High wavelength resolution Thermal to epithermal neutrons Peak brightness 16 beam lines (4 are empty) 12 GUP instrument end stations 	 Atomic scale structure and processes Strengths: Average brightness Thermal neutrons 3 thermal beam tubes 7 GUP instrument end stations (+1 other)
	2 Coupled, Cold Moderators	Cold Guide Hall
• • •	Nano-mesoscale structure and processes, low-energy excitations, fundamental physics (FNPB) Strengths: • Peak brightness • Cold neutrons 8 beam lines (1 is empty) 6 GUP instrument end stations + FNPB	 Nano-mesoscale structure, low-energy excitations Strengths: Average brightness Cold neutrons 4 guides 5 GUP instrument end stations (+3 other)

GUP is general user program

ORNL neutron sources – after HFIR beryllium outage and PPU

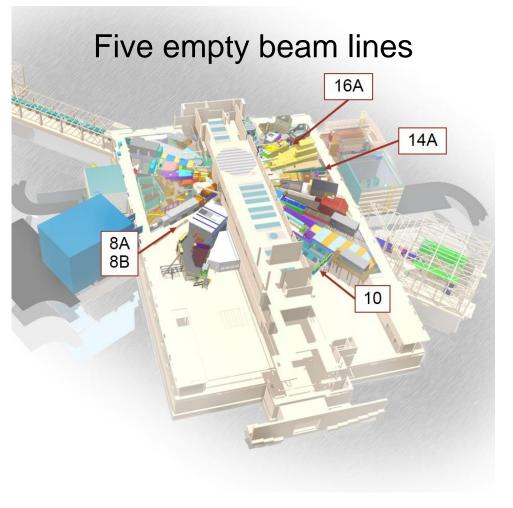

	SNS-FTS 60 Hz, 2 MW	HFIR 85 MW
	Poisoned, De-coupled Moderators (1 thermal, 1 cold)	Thermal Beam Room
	 Atomic scale structure and processes Strengths: High wavelength resolution Thermal neutrons Peak brightness 16 beam lines (2 are empty) 14 GUP instrument end stations 	 Atomic scale structure and processes Strengths: Average brightness Thermal neutrons 3 thermal beam tubes 7 GUP instrument end stations
	2 Coupled, Cold Moderators	Cold Guide Hall
	 Nano-mesoscale structure and processes, low-energy excitations, fundamental physics (FNPB) Strengths: Peak brightness Cold neutrons 	 Nano-mesoscale structure, low-energy excitations Strengths: Average brightness Cold neutrons 6-7 guides and mirror optics systems
al	 8 beam lines (1 is empty) 6 GUP instrument end stations + FNPB 	5-6 GUP instrument end stations

GUP is general user program


ORNL neutron sources – after HFIR beryllium outage, PPU and STS

SNS-FTS 45 pulses/sec, 2MW	SNS-STS 15 Hz, 700 kW	HFIR 85 MW
Poisoned, De-coupled Moderators (1 thermal, 1 cold)	Geometrically Optimized, Coupled Cold Moderators	Thermal Beam Room
 Atomic scale structure and processes Strengths: High wavelength resolution Thermal neutrons Peak brightness 16 beam lines (2 are empty) 14 GUP instrument end stations 2 Coupled, Cold Moderators (possible replacement with p, dc) Nano-mesoscale structure and processes, low-energy excitations, fundamental physics Strengths: 45 pps Cold neutrons Large beams 8 beam lines (1 is empty) 6 GUP instrument end stations + FNPB 	 Nano-mesoscale structure and processes, complex and hierarchical materials, low-energy excitations, kinetics Strengths: Peak brightness (13× FTS (@2 MW, 45 pps) and 113× HFIR cold source @ λ=5 Å) Cold neutrons Low repetition rate Small beams 22 beam lines 8 initial GUP instrument end stations 	 Atomic scale structure and processes Strengths: Average brightness Thermal neutrons 3 thermal beam tubes 7 GUP instrument end stations Cold Guide Hall Nano-mesoscale structure, low-energy excitations Strengths: Average brightness Cold neutrons 6-7 guides and mirror optics systems 5-6 GUP instrument end stations

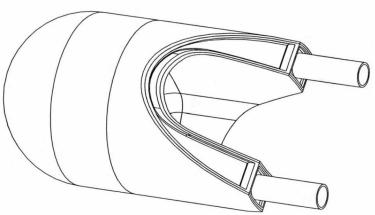
Opportunities at SNS and HFIR for new instruments now



Guidelines for building new instruments

- Commit money and resources to build new instruments that have high science impact
 - fill gaps in capabilities (e.g. DISCOVER, MANTA)
 - address capacity and user access (e.g. high throughput SANS)
 - implement new methods to meet emerging needs (e.g. VENUS)
- Engage the user community to identify priorities
- New instruments should have a minimum 10 year operations horizon
- Exploit the complementarity that exists between the current and proposed ORNL neutron sources
 - Wavelength resolution, average and peak brightness, cold and thermal neutrons, repetition rate
 - Locate instruments at the neutron source where they will be most productive
- Create opportunities and an environment that encourage external partnerships

High priority instruments for FTS leverage its high wavelength resolution strength



HIGGS	Inverse geometry spectrometer	BL-8A	
Micro	Compact, texture, special purpose diffractometer	dc-p H ₂ O	
DISCOVER	Medium resolution/flux diffractometer	BL-8B dc-p H ₂ O	
VENUS	Time-of-flight neutron imaging station	BL-10 dc-p para-H ₂	
INVENT	Concept development station	BL-14A	
SANS/GI- SANS	SANS and/or GI-SANS	c para-H ₂	
BeFAST	Beryllium filter spectrometer	BL-16A dc-p H ₂ O	
HRPD	High Resolution Powder Diffractometer	Needs dc-p para-H ₂ 100 m flight path	

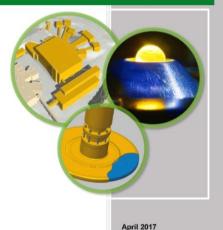
dc-p: decoupled, poisoned c: coupled H_2O : thermal para- H_2 : cold

Re-optimization of the HFIR guide hall will support additional instrument end stations

- HFIR cold source is compact (69 cm² area) H₂
- Adding a para-H₂ convertor could increase brightness by 30%
- Moving guide entrance from 5 m to 4 m from cold source will improve illumination by H25/16 (56%)
 - Guides are under-illuminated at long wavelengths
 - Best optimized to instrument end stations that have small samples and/or require limited beam divergence
- The opportunity is to gain a factor of x2 in ability to illuminate the guide system and support a more capable instrument suite

SEE DETAIL

Instruments proposed for the HFIR guide hall are optimized to its high time-average cold neutron brightness

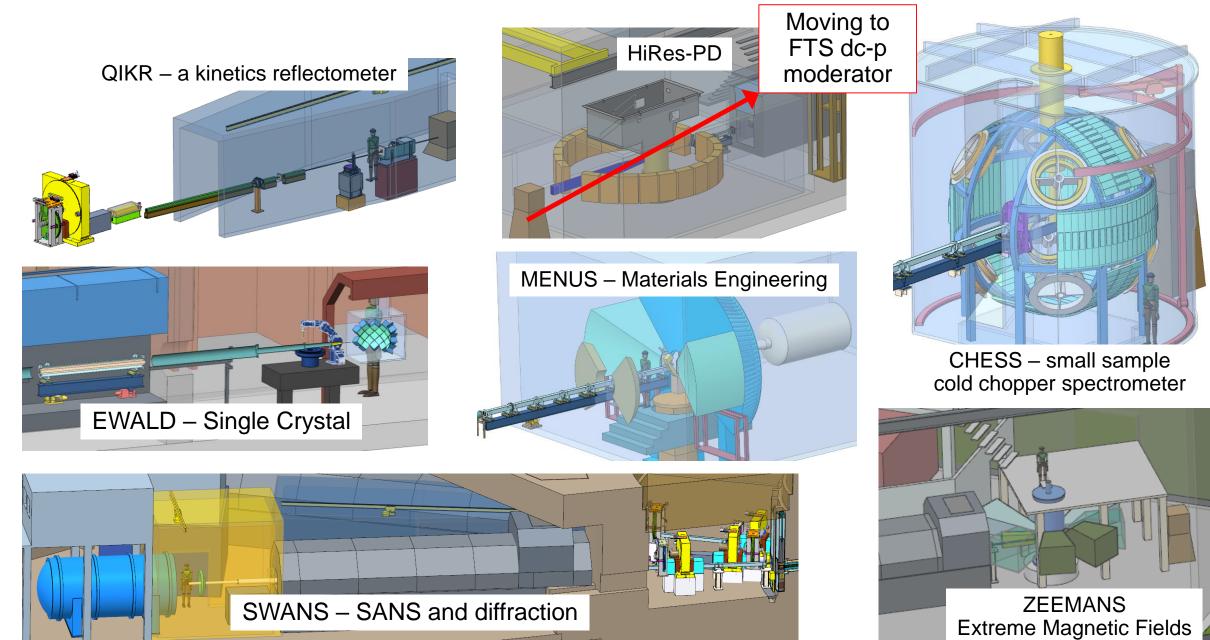

MANTA	Multi-analyzer cold TAS	CG-1
kSANS	High throughput SANS	CG-X
NSE	Neutron Spin Echo	
IMAGING	Cold neutron imaging	Moves to CG-X Improved optics
IMAGINE	Laue Diffractometer	Moves to CG-X Improved optics
LARMOR	Spin-precession techniques	Moves to CG-X Improved optics

Re-optimized HFIR cold guide hall

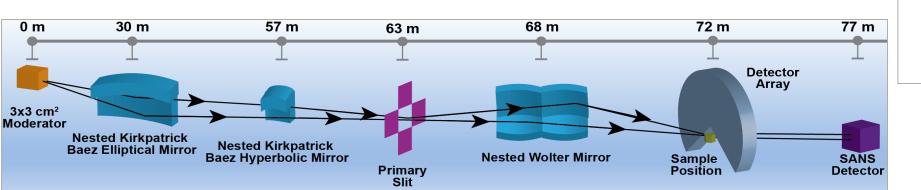
ORNL/TM-2017/490

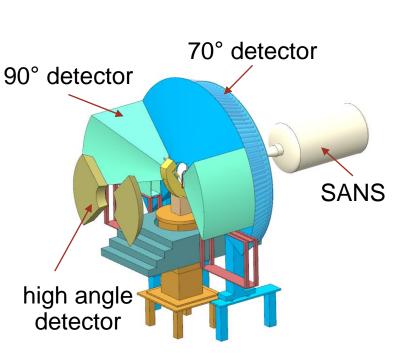
Spallation Neutron Source Second Target Station Integrated Systems Update

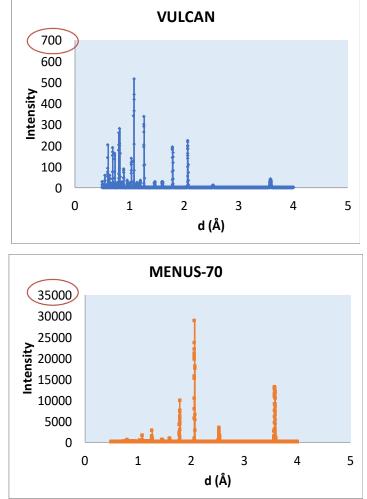
APPROVED FOR PUBLIC RELEASE. DISTRIBUTION IS UNLIMITED.


OAK RIDGE NATIONAL LABORATORY MANAGED BY UT-BATTELLE FOR THE US DEPARTMENT OF ENERGY

https://info.ornl.gov/sites/publications/Files/Pub103496.pdf

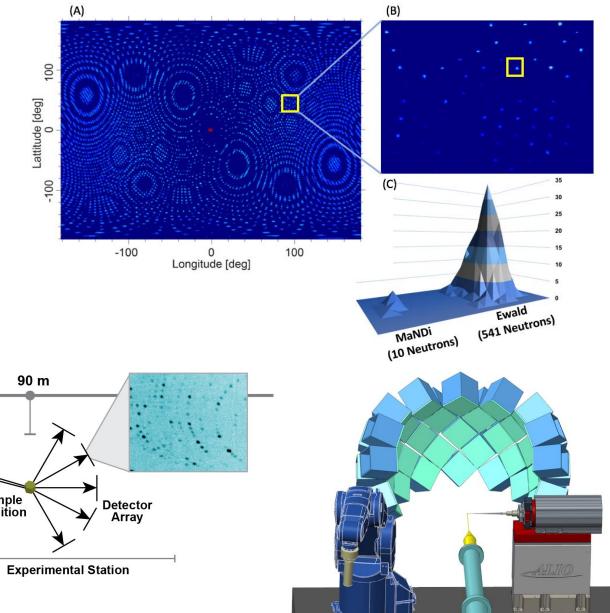


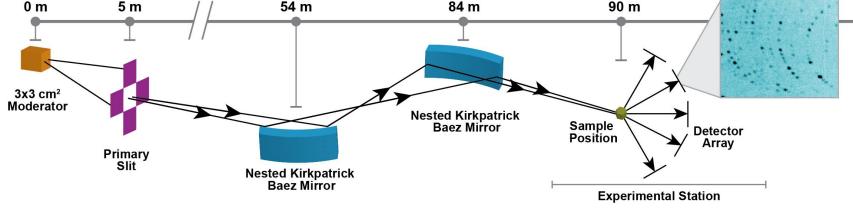

8 high priority STS instrument concepts were developed for April 2017 review



MENUS – Materials Engineering by NeUtron Scattering

- Anisotropy in low symmetry materials
- Superlattice structures and stress partitioning
- In operando and extreme fields
- Kinetic phase transitions
- High spatial resolution strain scanning





Simulated diffraction of Ni3Al with super lattice structure at (100) 3.58 Å

EWALD: Extended Wide Angle Laue Diffractometer

- Macromolecular neutron crystallography
- Minimum crystal size needed on MaNDi is 0.1 mm³ (2016)
- ~60×flux of MaNDi at FTS

Neutron optics and polarization development

Recent and Next Steps

- Instrument Advisory Board January 24-25, 2018
 - Incorporate board input on balance and composition into our planning for new instruments
- HFIR Cold Source Review February 16, 2018
 - Following up on recommendation to validate ortho-para hydrogen ratio in cold source
- ORNL Neutron Users New Instrument Workshop June 24, 2018 (satellite of ACNS)
 - https://conference.sns.gov/event/102/
 - SNS-HFIR User Group Executive Committee is organizing
 - Seeking guidance from the research community on priorities for building new instruments.
- Seek proposals for instrument end stations
 - Continue instrument pre-concept development
 - Assemble Instrument Advisory Teams that includes two co-PIs (one internal, one external to NScD) responsible to author the proposal
 - Proposal includes science case, concept, proposed funding model, anticipated user demand, and evaluation
 of performance (Monte Carlo model) and technical feasibility
- Complete optics design of HFIR guides (FY18) Order new guides early in FY19
- Initiate new instrument projects at SNS in FY19
- Seek external partnerships for instrument end stations

