APPLICATIONS OF LUA-BASED EMBEDDED
SCRIPTING WITHIN EPICS AT LANSCE

Jeff Hill
LANSCE

-
©

APPLICATIONS OF LUA EMBEDDED SCRIPTING
— OUTLINE

* Lua, a Brief Introduction (review)
* EPICS Integration of Lua milestones (review)
« Lua Beam Species Filtering at LANSCE

« Conclusions

APPLICATIONS OF LUA EMBEDDED SCRIPTING
— LUAABRIEF INTRODUCTION (REVIEW)

« Lua embeddable language was created in 1993

« By members of the Computer Graphics Technology Group (Tecgraf) at the Pontifical
Catholic University of Rio de Janeiro, in Brazil.

« "Lua" (pronounced LOO-ah) means "Moon" in Portuguese

* Interpreted, compiled at load-time to byte-code

« A mixture of C-like and Pascal-like syntax

* Dynamic typed, automated conversion between string and nummeric types

 Efficient virtual machine execution, small footprint, incremental garbage collection, easily
interfaced with C code

* Liberal MIT license
« Some negatives also, see my talk at Michigan EPICS meeting

* In particular, variables are globally scoped by default

APPLICATIONS OF LUA EMBEDDED SCRIPTING
— EPICS INTEGRATION OF LUA MILESTONES

* Lua 5.2.3, the current release, embedded inside of EPICS base
* Built by the EPICS build system
* This is the current released version of Lua

* |t has the upgraded support for integer primitive types

APPLICATIONS OF LUA EMBEDDED SCRIPTING
— EPICS INTEGRATION OF LUA MILESTONES

 Lua based subscription filtering in the CA server
« Event queue is order correct
* Based on C++ 11 shared pointer

 Subset of boost included in EPICS base supporting prior compilers

APPLICATIONS OF LUA EMBEDDED SCRIPTING
— EPICS INTEGRATION OF LUA MILESTONES

» Lua based subscription filtering in the CA server
 Filters specified as channel name postfix
 Invoking Lua methods supplied when the 10C boots
 Each client attaching to the server

 Instantiates an independent Lua context

APPLICATIONS OF LUA EMBEDDED SCRIPTING
— EPICS INTEGRATION OF LUA MILESTONES

« Alternative EPICS SHELL
 In contrast, a fully functionality scripting language
 Powerful libraries, built-in and community
* An environment well proven for use in
 Configuration
* Scripting
» Rapid-prototyping

APPLICATIONS OF LUA EMBEDDED SCRIPTING
— EPICS INTEGRATION OF LUA MILESTONES

« EPICS IOC shell can invoke, and pass arguments to, Lua scripts
» Lua scripts can invoke, and pass arguments to
» Any of the commands registered into EPICS 10C shell

« We can, for example, instantiate records within a Lua for loop

APPLICATIONS OF LUA EMBEDDED SCRIPTING
— EPICS INTEGRATION OF LUA MILESTONES

Currently we have two computational record-level building block components
EPICS calc record
 Excellent rapid prototyping, but limited functionality
EPICS subroutine record
Excellent efficiency, but possibly less popular for rapid prototyping
A new Lua based record provides
Comprehensive functionality set
A reasonable compromise runtime execution efficiency
The rapid prototyping we depend on with the calc record
Upgrade in-place
via CA puts to lua record fields
And, hopefully the heavy lifting comes for free with Lua

APPLICATIONS OF LUA EMBEDDED SCRIPTING
— LUA EVENT FILTERING AT LANSCE

LANSCE Requirements
At LANSCE flavors are specified by
« Aset of timing system gates that shall logically be present
« Aset of timing system gates that shall logically not be present
At LANSCE we schedule unique flavors for each beam pulse in a 120 entry map
Beam pulses occur at 120 Hz rate, flavor map index increments at this rate
Our flavor map repeats at 1 Hz rate , flavor map index returns to zero at this rate
EPICS CA flavor subscription update rates, no more than 4 Hz
At LANSCE flavored data are typically waveforms

Real-time lock between data arrival and timing-system in embedded systems

APPLICATIONS OF LUA EMBEDDED SCRIPTING
— LUA EVENT FILTERING AT LANSCE

LANSCE Implementation
Beam species subscriptions specified on the CA client side

Flavored subscriptions don’t require modifications to existing client side tools in the
control room

Flavor is specified in a CA channel name postfix
Flavored subscriptions are decimated to satisfy update rate requirements
The CA server selects 4 entries in our flavor map for any specified flavor
The same 4 entries are selected on all IOCs so we can have synchronous data
Managed network consumption and synchronization of flavors between IOCs
RTEMS real time OS in embedded systems

APPLICATIONS OF LUA EMBEDDED SCRIPTING
— LUA EVENT FILTERING AT LANSCE

Architecture
Data produced by FPGA Signal processing into multiplexed Avalon packet streams
Hardware produces N packets per beam-pulse
» Each packet is channel-number-tagged
» Multiplexing hardware enforces ordered arrival of per-channel packets
Scatter-gather DMA of packets into Nios2 FPGA-soft-core DDR RAM
|dentical software DMA support software leveraged in multiple systems

» Low-level-RF feedback controls, BPPMs, current-monitors, radiation-monitors

APPLICATIONS OF LUA EMBEDDED SCRIPTING
— LUA EVENT FILTERING AT LANSCE

* Real-time lock between DMA data and timing-system is required

» Packets arrive in ordered sequence
+ Software doesn’t necessarily start at the correct place in this sequence

« DMAdriver therefore runs in two modes, and can transition between them at any time
* Acquiring real-time lock mode
* Real-time locked mode

* Acquiring real-time lock mode runs at one interrupt per-packet

* Real-time locked mode runs at one interrupt per beam-pulse

 Transition to locked mode occurs
» When the packet with end-of-series channel number arrives

 Transition to acquiring-lock state
« If any of the received packets fail to have expected sequentially ordered channel number

« |t was necessary to lower the network daemon’s priority in EPICS RTEMS startup code to get this type
of real-time synchronization to work in a high priority thread

APPLICATIONS OF LUA EMBEDDED SCRIPTING
— LUA EVENT FILTERING AT LANSCE

Performance
Data arrival rate versus FPGA-embedded softcore processor clock-rate
120 Hz * 16 channels * 2048 elements * 4 bytes per element * 8 bits per byte
» 126 Mbps Avalon stream packets to DDR RAM incoming data rate
180-220 MHz Nios2 FPGA-soft-core clock rate
* 6.4 Gbps processor to DDR RAM throughput
» 1 Gbps LAN interface with 120 Mbps processor-limited throughput

APPLICATIONS OF LUA EMBEDDED SCRIPTING
— LUA EVENT FILTERING AT LANSCE

Performance
Interrupt service routine is very short by design
It only clears interrupts and sets a semaphore
DMA daemon is responsible for
Packet validation
Timing link validation
* Waveform memory management
DMA device management
DMA daemon uses about 6% of the CPU, independent of CA client load

Record processing uses about 10% of the CPU, minimally impacted by CA client load

APPLICATIONS OF LUA EMBEDDED SCRIPTING
— LUAEVENT FILTERING AT LANSCE

« Memory management, key to efficiency

APPLICATIONS OF LUA EMBEDDED SCRIPTING
— LUA EVENT FILTERING AT LANSCE

CA Channel name postfix Lua code
This code can serve one of two purposes
» The channel name postfix Lua code is a per-subscription-update filter
 This code is executed by Lua for each and every subscription update
» Returns false, then the subscription update isn't sent
* Returns true then the subscription update is sent
» The channel name postfix code is a factory
 This code is executed by Lua when the channel is created
 Returns a Lua function
« This function is employed as the per-subscription-update filter
* Returns a Lua object
» A method on this object serves as the per-subscription-update filter

APPLICATIONS OF LUA EMBEDDED SCRIPTING
— LUA EVENT FILTERING AT LANSCE

CA Channel name postfix Lua code syntax examples
Syntax borrows from scheme of Lua long comments

This approach has the benefit of avoidance of escape character sequences

xxxChannelName % { Lua channel or filter factory source code }"
xxxChannelName % {{ Lua channel or filter factory source code }}"
xxxChannelName % {={ Lua channel or filter factory source code }=}"
xxxChannelName % {=={ Lua channel or filter factory source code
J==13" ...

xxxChannelName % [Lua filter source code]" syntax

xxxChannelName % [[Lua filter source code]]" syntax
xxxChannelName % [=[Lua filter source code]=]" syntax
xxxChannelName % [==[Lua filter source code]==]" syntax ...

APPLICATIONS OF LUA EMBEDDED SCRIPTING
— LUA EVENT FILTERING AT LANSCE

Error handling copies Lua stack trace back to client application

$ camonitor "53ML001V00%{dog()}"
CA.Client.EXception........c.coceveveevieiccieicecreine,s

Warning: "Not supported by attached service"
Context: "host=mb3lfcm.Ics.net:5064 ctx=PV (53ML001V00) Lua Factory:1:

stack traceback:
[C]: in global 'dog’
PV (53ML001V00) Lua Factory:1: in main chunk
[C]:in?
[C]: in ?"
Current Time: Sat Sep 17 2016 18:30:24.709222557

APPLICATIONS OF LUA EMBEDDED SCRIPTING
— LUA EVENT FILTERING AT LANSCE

Lua code for simple counting decimator, loaded at I0C startup

function decimatorFactory (channelName)
function filtFac (channel, lowDelta, highDelta, timeout)
local count =0
function filter (ch)
count = count + 1
return (count % 30) ==

end

return filter;
end
local chan = {

filterFactory = filtFac
}

return chan
end

APPLICATIONS OF LUA EMBEDDED SCRIPTING
— LUA EVENT FILTERING AT LANSCE

« Channel Access channel name invoking the decimatorFactory () to control the update rate

camonitor "53ML001V00%{decimatorFactory ()}"

APPLICATIONS OF LUA EMBEDDED SCRIPTING
— LUA EVENT FILTERING AT LANSCE

Syntax of LANSCE flavor specification (factory syntax)
This specifies that gate MBEG shall be present
This specifies that gates LBEG and H-GX shall not be present

xxxChannelName % { flavor(“MPEG no LBEG H-GX") "

Syntax of LANSCE flavor specification (factory syntax)
This specifies only that gate MBEG shall be present

xxxChannelName % { flavor("MPEG") }"

THE EPICS LUA SCRIPT RECORD
— CONCLUSION

» Lua embeddable scripting language capabilities have been integrated into EPICS

* At LANSCE Lua-based CA server event queue filtering is used to implement beam
species filtering

* Filtering is implemented using a quite general Lua scripting language based
approach which makes it suitable for multiple sites and projects

* Flavored decimation is necessary to manage network bandwidth consumption and
for synchronizing updates between I0OCs

