
Jeff Hill

LANSCE

APPLICATIONS OF LUA-BASED EMBEDDED

SCRIPTING WITHIN EPICS AT LANSCE

APPLICATIONS OF LUA EMBEDDED SCRIPTING

– OUTLINE

• Lua, a Brief Introduction (review)

• EPICS Integration of Lua milestones (review)

• Lua Beam Species Filtering at LANSCE

• Conclusions

APPLICATIONS OF LUA EMBEDDED SCRIPTING

– LUA A BRIEF INTRODUCTION (REVIEW)

• Lua embeddable language was created in 1993

• By members of the Computer Graphics Technology Group (Tecgraf) at the Pontifical
Catholic University of Rio de Janeiro, in Brazil.

• "Lua" (pronounced LOO-ah) means "Moon" in Portuguese

• Interpreted, compiled at load-time to byte-code

• A mixture of C-like and Pascal-like syntax

• Dynamic typed, automated conversion between string and nummeric types

• Efficient virtual machine execution, small footprint, incremental garbage collection, easily
interfaced with C code

• Liberal MIT license

• Some negatives also, see my talk at Michigan EPICS meeting

• In particular, variables are globally scoped by default

APPLICATIONS OF LUA EMBEDDED SCRIPTING

– EPICS INTEGRATION OF LUA MILESTONES

• Lua 5.2.3, the current release, embedded inside of EPICS base

• Built by the EPICS build system

• This is the current released version of Lua

• It has the upgraded support for integer primitive types

APPLICATIONS OF LUA EMBEDDED SCRIPTING

– EPICS INTEGRATION OF LUA MILESTONES

• Lua based subscription filtering in the CA server

• Event queue is order correct

• Based on C++ 11 shared pointer

• Subset of boost included in EPICS base supporting prior compilers

APPLICATIONS OF LUA EMBEDDED SCRIPTING

– EPICS INTEGRATION OF LUA MILESTONES

• Lua based subscription filtering in the CA server

• Filters specified as channel name postfix

• Invoking Lua methods supplied when the IOC boots

• Each client attaching to the server

• Instantiates an independent Lua context

APPLICATIONS OF LUA EMBEDDED SCRIPTING

– EPICS INTEGRATION OF LUA MILESTONES

• Alternative EPICS SHELL

• In contrast, a fully functionality scripting language

• Powerful libraries, built-in and community

• An environment well proven for use in

• Configuration

• Scripting

• Rapid-prototyping

APPLICATIONS OF LUA EMBEDDED SCRIPTING

– EPICS INTEGRATION OF LUA MILESTONES

• EPICS IOC shell can invoke, and pass arguments to, Lua scripts

• Lua scripts can invoke, and pass arguments to

• Any of the commands registered into EPICS IOC shell

• We can, for example, instantiate records within a Lua for loop

APPLICATIONS OF LUA EMBEDDED SCRIPTING

– EPICS INTEGRATION OF LUA MILESTONES

• Currently we have two computational record-level building block components

• EPICS calc record

• Excellent rapid prototyping, but limited functionality

• EPICS subroutine record

• Excellent efficiency, but possibly less popular for rapid prototyping

• A new Lua based record provides

• Comprehensive functionality set

• A reasonable compromise runtime execution efficiency

• The rapid prototyping we depend on with the calc record

• Upgrade in-place

• Runtime code updates via CA puts to lua record fields

• And, hopefully the heavy lifting comes for free with Lua

APPLICATIONS OF LUA EMBEDDED SCRIPTING

– LUA EVENT FILTERING AT LANSCE

• LANSCE Requirements

• At LANSCE flavors are specified by

• A set of timing system gates that shall logically be present

• A set of timing system gates that shall logically not be present

• At LANSCE we schedule unique flavors for each beam pulse in a 120 entry map

• Beam pulses occur at 120 Hz rate, flavor map index increments at this rate

• Our flavor map repeats at 1 Hz rate , flavor map index returns to zero at this rate

• EPICS CA flavor subscription update rates, no more than 4 Hz

• At LANSCE flavored data are typically waveforms

• Real-time lock between data arrival and timing-system in embedded systems

APPLICATIONS OF LUA EMBEDDED SCRIPTING

– LUA EVENT FILTERING AT LANSCE

• LANSCE Implementation

• Beam species subscriptions specified on the CA client side

• Flavored subscriptions don’t require modifications to existing client side tools in the

control room

• Flavor is specified in a CA channel name postfix

• Flavored subscriptions are decimated to satisfy update rate requirements

• The CA server selects 4 entries in our flavor map for any specified flavor

• The same 4 entries are selected on all IOCs so we can have synchronous data

• Managed network consumption and synchronization of flavors between IOCs

• RTEMS real time OS in embedded systems

APPLICATIONS OF LUA EMBEDDED SCRIPTING

– LUA EVENT FILTERING AT LANSCE

• Architecture

• Data produced by FPGA Signal processing into multiplexed Avalon packet streams

• Hardware produces N packets per beam-pulse

• Each packet is channel-number-tagged

• Multiplexing hardware enforces ordered arrival of per-channel packets

• Scatter-gather DMA of packets into Nios2 FPGA-soft-core DDR RAM

• Identical software DMA support software leveraged in multiple systems

• Low-level-RF feedback controls, BPPMs, current-monitors, radiation-monitors

APPLICATIONS OF LUA EMBEDDED SCRIPTING

– LUA EVENT FILTERING AT LANSCE

• Real-time lock between DMA data and timing-system is required

• Packets arrive in ordered sequence

• Software doesn’t necessarily start at the correct place in this sequence

• DMA driver therefore runs in two modes, and can transition between them at any time

• Acquiring real-time lock mode

• Real-time locked mode

• Acquiring real-time lock mode runs at one interrupt per-packet

• Real-time locked mode runs at one interrupt per beam-pulse

• Transition to locked mode occurs

• When the packet with end-of-series channel number arrives

• Transition to acquiring-lock state

• If any of the received packets fail to have expected sequentially ordered channel number

• It was necessary to lower the network daemon’s priority in EPICS RTEMS startup code to get this type
of real-time synchronization to work in a high priority thread

APPLICATIONS OF LUA EMBEDDED SCRIPTING

– LUA EVENT FILTERING AT LANSCE

• Performance

• Data arrival rate versus FPGA-embedded softcore processor clock-rate

• 120 Hz * 16 channels * 2048 elements * 4 bytes per element * 8 bits per byte

• 126 Mbps Avalon stream packets to DDR RAM incoming data rate

• 180-220 MHz Nios2 FPGA-soft-core clock rate

• 6.4 Gbps processor to DDR RAM throughput

• 1 Gbps LAN interface with 120 Mbps processor-limited throughput

APPLICATIONS OF LUA EMBEDDED SCRIPTING

– LUA EVENT FILTERING AT LANSCE

• Performance

• Interrupt service routine is very short by design

• It only clears interrupts and sets a semaphore

• DMA daemon is responsible for

• Packet validation

• Timing link validation

• Waveform memory management

• DMA device management

• DMA daemon uses about 6% of the CPU, independent of CA client load

• Record processing uses about 10% of the CPU, minimally impacted by CA client load

APPLICATIONS OF LUA EMBEDDED SCRIPTING

– LUA EVENT FILTERING AT LANSCE

• Memory management, key to efficiency

One optimized memory allocation per

16 waveforms performed DMA daemon
CA Server upgraded Event Queues, order

preserving, based on C++ shared_ptr

Database record VAL field is type

DBF_VARIANT with embedded C++ shared_ptr

reference to Data Access indexed waveform,

timing, flavoring information

APPLICATIONS OF LUA EMBEDDED SCRIPTING

– LUA EVENT FILTERING AT LANSCE

• CA Channel name postfix Lua code

• This code can serve one of two purposes

• The channel name postfix Lua code is a per-subscription-update filter

• This code is executed by Lua for each and every subscription update

• Returns false, then the subscription update isn't sent

• Returns true then the subscription update is sent

• The channel name postfix code is a factory

• This code is executed by Lua when the channel is created

• Returns a Lua function

• This function is employed as the per-subscription-update filter

• Returns a Lua object

• A method on this object serves as the per-subscription-update filter

APPLICATIONS OF LUA EMBEDDED SCRIPTING

– LUA EVENT FILTERING AT LANSCE

• CA Channel name postfix Lua code syntax examples

• Syntax borrows from scheme of Lua long comments

• This approach has the benefit of avoidance of escape character sequences

xxxChannelName % { Lua channel or filter factory source code }"

xxxChannelName % {{ Lua channel or filter factory source code }}"

xxxChannelName % {={ Lua channel or filter factory source code }=}"

xxxChannelName % {=={ Lua channel or filter factory source code

}==}" ...

xxxChannelName % [Lua filter source code]" syntax

xxxChannelName % [[Lua filter source code]]" syntax

xxxChannelName % [=[Lua filter source code]=]" syntax

xxxChannelName % [==[Lua filter source code]==]" syntax ...

APPLICATIONS OF LUA EMBEDDED SCRIPTING

– LUA EVENT FILTERING AT LANSCE

• Error handling copies Lua stack trace back to client application

 $ camonitor "53ML001V00%{dog()}"

CA.Client.Exception...

 Warning: "Not supported by attached service"

 Context: "host=m53lfcm.lcs.net:5064 ctx=PV (53ML001V00) Lua Factory:1: attempt to

call a nil value (global 'dog')

stack traceback:

 [C]: in global 'dog'

 PV (53ML001V00) Lua Factory:1: in main chunk

 [C]: in ?

 [C]: in ?"

 Current Time: Sat Sep 17 2016 18:30:24.709222557

..

APPLICATIONS OF LUA EMBEDDED SCRIPTING

– LUA EVENT FILTERING AT LANSCE

• Lua code for simple counting decimator, loaded at IOC startup

function decimatorFactory (channelName)

 function filtFac (channel, lowDelta, highDelta, timeout)

 local count = 0

 function filter (ch)

 count = count + 1

 return (count % 30) == 0

 end

 return filter;

 end

 local chan = {

 filterFactory = filtFac

 }

 return chan

end

APPLICATIONS OF LUA EMBEDDED SCRIPTING

– LUA EVENT FILTERING AT LANSCE

• Channel Access channel name invoking the decimatorFactory () to control the update rate

camonitor "53ML001V00%{decimatorFactory ()}"

APPLICATIONS OF LUA EMBEDDED SCRIPTING

– LUA EVENT FILTERING AT LANSCE

• Syntax of LANSCE flavor specification (factory syntax)

• This specifies that gate MBEG shall be present

• This specifies that gates LBEG and H-GX shall not be present

xxxChannelName % { flavor(“MPEG no LBEG H-GX”) }"

• Syntax of LANSCE flavor specification (factory syntax)

• This specifies only that gate MBEG shall be present

xxxChannelName % { flavor(“MPEG”) }"

THE EPICS LUA SCRIPT RECORD

– CONCLUSION

• Lua embeddable scripting language capabilities have been integrated into EPICS

• At LANSCE Lua-based CA server event queue filtering is used to implement beam

species filtering

• Filtering is implemented using a quite general Lua scripting language based

approach which makes it suitable for multiple sites and projects

• Flavored decimation is necessary to manage network bandwidth consumption and

for synchronizing updates between IOCs

