20 October 2021 to 12 November 2021
US/Eastern timezone

This year the school will be a virtual event taking place each Wednesday and Friday afternoon (Eastern Standard Time) from October 20th to November 12th.  

This school is aimed at introducing total scattering data and modelling methods and demonstrating their use in understanding complex functional materials, in addition to reviewing recent developments and future directions in the technique. Most of the school will be focused on providing hands-on training with total scattering analysis software, with the balance focused on providing a technical foundation and highlighting exemplary work in the community.

Total scattering (and the associated pair distribution function technique), an extension of diffraction methods, is increasingly prevalent in modern materials studies. The unique combination of Bragg and diffuse scattering has related vacancies in high temperature ceramics to both their superionic conductivity and phase stability, nanometer-sized polar domains or nanoregions in relaxor ferroelectrics to their enhanced dielectric and piezoelectric properties, and vacancy/disorder arrays and other subtle local correlations to the mechanisms of high-Tc superconductivity. These methods have further proven critical in understanding guest-host interactions, amorphous to crystalline transitions, local spin correlations, and other disordered crystalline materials phenomena.

Total scattering is most informative when modeled atomistically with computational methods. Modern software spans small and large box approaches and can incorporate neutron and x-ray PDF, EXAFS & single crystal diffuse scattering data. Resulting atomistic models aid scientists from diverse disciplines in understanding the inner-workings of property mechanisms, and ultimately in optimizing and controlling them through atomic structure modification.

Topics covered:

Introduction to Total Scattering
Modern Total Scattering Instruments and Data
Hands-on Data Analysis with:

  • Small box modeling with PDFGui & Diffpy-CMI
  • Large box modeling with RMCProfile & EXAFS data
  • Building and refining nanoparticles with DISCUS

ORNL Organizers:

Katharine Page, Thomas Proffen and Matt Tucker

BNL Organizers:

Daniel Olds, Milinda Abeykoon, Emil Bozin and Eric Dooryhee

UTK Organizer:

Katharine Page

Additional Confirmed Speakers:
Igor Levin, National Institute of Standards and Technology
Reinhard Neder, University of Erlangen, Germany
 

Starts
Ends
US/Eastern
Wednesday and Friday afternoon virtual sessions starting on October 20th and running through November 12th

We will limit the school to 30 accepted participants to ensure individual hands-on sessions remain small and interactive. Preference will be given to active and future US facility users who can benefit from total scattering methods.  Selected applicants will be notified on or before October 4, 2021. Registration is free for this virtual event.