Conveners
EIC
- Dave Gaskell
EIC
- Dave Gaskell
Synchrotron radiation plays an important role in the polarization dynamics of an electron beam in the energy range of Jefferson Lab Electron-Ion Collider (JLEIC). High polarization of the JLEIC electron beam is achieved using two design features. The first one is a continuous full-energy top-off of the stored electron beam by a highly-polarized beam from CEBAF. The second one is arrangement of...
The electron-ion collider (EIC) eRHIC at BNL aims at a luminosity of 10^34 cm^-2 sec^-1 in collisions of polarized electron and polarized proton, deuteron, and 3He beams. We will present an overview of the proposed facility with an emphasis on generation and acceleration of the polarized beams and the expected polarization performance.
The capability of accelerating a high-intensity polarized $^{3}$He ion beam would provide an effective polarized neutron beam for new high-energy QCD studies of nucleon structure. This development is essential for the future Electron Ion Collider, which could use a polarized $^{3}$He ion beam to probe the spin structure of the neutron. The proposed polarized $^{3}$He ion source is based on...
Compton polarimetry is the prime candidate for electron polarization measurement since it is virtually ininvasive and can reach very good level of accuracy with best measurements at the 0.4 % level accuracy. It is especially suitable at high energy since the analyzing power grows with electron energy.
I will present the current Compton Polarimeters available at Jefferson Laboratory and also...
The broad physics program at a future electron-ion collider is, in part, based on the availability of high electron and proton beam polarizations. Proton polarimetry will have to include an absolute normalization as well as fast measurements of the polarization of the bunched beam. The required high luminosities in combination with short bunch spacing represent specific challenges....
In the eRHIC high-luminosity collider proposal the number of ion bunches will be increased and the bunch spacing will be reduced from current 107 ns (RHIC) to 34.8 ns at the first stage and finally to 8.7 ns. This beam timing structure will be a challenge for the elastic events identification in the RHIC CNI (Coulomb Nuclear Interference) polarimeters and an essential upgrade of the...