Abby Forgety - Administrative Assistant

Agenda

Biological Small-Angle Neutron Scattering Workshop

 

Agenda:

 

Link to workshop agenda: https://conference.sns.gov/event/511/

 

Day 1: October 15, 2025

Teams Link: Join the meeting now

 

Schedule (EST)

Activity

Lead

9:30-9:45 am

Introductions

Hugh O’Neill

9:45-10:00 am

Center for Structural Molecular Biology Overview

Hugh O’Neill

10:00-10:30 am

Introduction to Small-Angle Neutron Scattering - Part 1

Volker Urban

10:30-11:00 am

Demonstration 1: Data reduction and background subtraction using SANS Super EASY

Wellington Leite/ Sai Venkatesh Pingali/Alan Hicks

11:00-11:15 am

Break

 

11:15-11:30 am

Virtual tour of Bio-SANS

Felicia Gilliland

11:30-11:45 am

Virtual Tour of Biology Laboratories

Qiu Zhang

11:44 am-12:45 pm

Lunch

 

12:45-1:15 pm

Introduction to Small-Angle Neutron Scattering -Part 2

Volker Urban

1:15-1:45 pm

Demonstration 2: Kratky plot, Guinier analysis, and Interparticle interferences

Wellington Leite/ Sai Venkatesh Pingali/Alan Hicks

1:45 -2:00 pm

Break

 

2:00-2:30 pm

Demonstration 3: P(r) analysis

Wellington Leite/ Sai Venkatesh Pingali/Alan Hicks

2:30-3:15 pm

Experiment Set-up and Data Acquisition

Sai Venkatesh Pingali

3:15-4:15 pm

Attendee Lightning Talks

Hugh O’Neill

 

 

Day 2: October 16, 2025

Teams Link: Join the meeting now

 

Schedule (EST)

Activity

Lead

9:30-11:00 am

Breakout and hands-on Session 1.0: Data analysis for solution scattering of biomacromolecular complexes

Breakout and hands-on Session 2.0: Data analysis for hierarchical biosystems

Wellington Leite/ Sai Venkatesh Pingali/Alan Hicks

11:00-11:15 am

Break

 

11:15 am-12:00 pm

Sample Preparation and Experiment Planning

Wellington Leite

12:00-1:00 pm

Lunch

 

1:00 - 1:20 am

Bio- and chemical deuteration

Kevin Weiss/ Honghai Zhang

1:20-2:20 pm

Breakout and hands-on Session 1.1: Data analysis for solution scattering of biomacromolecular complexes

Breakout and hands-on Session 2.1: Data analysis for hierarchical biosystems (Free discussion)

 

Wellington Leite/ Sai Venkatesh Pingali/Alan Hicks

2:20-2:30 pm

Break

 

2:30-3:00 pm

 

Q&A and Closing Remarks

Wellington Leite

 

Software required for Session 1

Software

Source

Application

 

 

 

SANS Super EASY

Installation guide

Software developed at ORNL to facilitate background subtraction and data analysis

ATSAS

EMBL

Program suite for small-angle scattering data analysis from biological macromolecules - https://www.embl-hamburg.de/biosaxs/software.html

RAW

BioXTAS

Program for analysis of Small-Angle X-ray Scattering (SAXS) data - https://bioxtas-raw.readthedocs.io/en/latest/api.html

Pymol

Schrödinger

Molecular visualization system - https://pymol.org/2/

Chimera

UCSF

Interactive visualization and analysis of molecular structures - https://www.cgl.ucsf.edu/chimera/

 

 

Software required for Session 2

Software

Source

Application

Irena

Igor Pro*

Irena package for analysis of small-angle scattering data

https://usaxs.xray.aps.anl.gov/software/irena

SASView

SASView 5+

SASView for small-angle scattering analysis - https://www.sasview.org

 

A free demonstration version of Igor Pro is available at [https://www.wavemetrics.com/downloads/current/Igor%20Pro%209]]. This should be installed prior to installing the Irena package.

 

If you have any trouble to install the SANS Super EASY please contact Alan Hicks (hicksac@ornl.gov) and Wellington Leite (leitewc@ornl.gov) :

 

Installing the SANS Super EASY GUI:

This code uses python, and it is recommended that you install a new virtual environment using your favorite python virtual environment handling software.

If you have:

Mamba/Conda Install:

1.       mamba/conda create -n sasgui -c conda-forge python=3.12

2.       mamba/conda activate sasgui

3.       mamba/conda install numpy pandas scipy param holoviews panel param bokeh

From the same virtual environment, we need to use pip to install the sasview code (https://github.com/sasview). Alternatively, pip can be used to install all the modules from 3.

4.       pip install sasview sasdata sasmodels

Get the code from the GitLab repository:

5.       git clone https://code.ornl.gov/rys/sans-analysis.git

This will create a file sans-analysis in your local machine with a file, “canvas.py”

Run the command:

6.       python3 sans-analysis/canvas.py

This will open a web-based GUI for running the analysis.

If you do not have git or do not know how to use git, we are going to use a jupyter notebook to launch the GUI.

7.       In addition to the above module installs, we need to install jupyer and jupyter notebook.

8.       mamba/conda/pip install jupyter notebook

Go to the following link to copy the code for the SANS Super EASY GUI:

https://colab.research.google.com/drive/1bo4wSZUkgWvhS5TWzql02aokXjfNnRGD?usp=sharing

Copy the code to a new notebook and then run all cells. Alternatively, you can copy the code to a new file, canvas.py and run like 6 above.