23–27 Sept 2019
Downtown Holiday Inn
US/Eastern timezone

NOPTREX: Polarized $^3$He Neutron Spin Filter and Polarized Xenon Pseudomagnetic Precession

26 Sept 2019, 10:00
20m
Downtown Holiday Inn

Downtown Holiday Inn

Knoxville, Tennessee
Polarized Neutrons Polarized Neutrons

Speaker

Hao Lu (Indiana University Bloomington)

Description

The Neutron OPtics Time Reversal Experiment (NOPTREX) collaboration is working towards a sensitive search for time reversal violation in polarized neutron transmission through polarized heavy nuclei. The experiment requires an intense, stable polarized neutron beam at the resonance energies of interest near 1 eV. We have recently constructed a $^3$He neutron spin filter at Indiana University which makes use of the very large spin dependent neutron absorption cross-section of $^3$He to polarize neutrons. We polarize $^3$He gas using spin-exchange optical pumping (SEOP). We have combined our laser optics and oven with a $\mu$-metal shielded solenoid and a $^3$He gas cell from ORNL to realize our polarizer. We also discuss a planned experiment to measure neutron pseudomagnetic precession in polarized xenon gas. $^{131}$Xe is one of the nuclei on interest for the NOPTREX test, and this measurement will help us determine a significant systematic error related to spin dependent components in polarized neutron-nucleus transmission and also measure the spin-dependent scattering amplitudes of both $^{129}$Xe and $^{131}$Xe for the first time. This experiment will use an Neutron Spin Echo spectrometer to measure pseudomagnetic precession and an existing SEOP system to polarize both $^{129}$Xe and $^{131}$Xe.

Primary author

Hao Lu (Indiana University Bloomington)

Presentation materials